Suppr超能文献

临床疼痛研究中电子数据采集与传统数据收集方法的比较:系统评价与荟萃分析。

Electronic Data Capture Versus Conventional Data Collection Methods in Clinical Pain Studies: Systematic Review and Meta-Analysis.

作者信息

Jibb Lindsay A, Khan James S, Seth Puneet, Lalloo Chitra, Mulrooney Lauren, Nicholson Kathryn, Nowak Dominik A, Kaur Harneel, Chee-A-Tow Alyssandra, Foster Joel, Stinson Jennifer N

机构信息

Child Health Evaluative Sciences, Hospital for Sick Children, Toronto, ON, Canada.

Lawrence S Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada.

出版信息

J Med Internet Res. 2020 Jun 16;22(6):e16480. doi: 10.2196/16480.

Abstract

BACKGROUND

The most commonly used means to assess pain is by patient self-reported questionnaires. These questionnaires have traditionally been completed using paper-and-pencil, telephone, or in-person methods, which may limit the validity of the collected data. Electronic data capture methods represent a potential way to validly, reliably, and feasibly collect pain-related data from patients in both clinical and research settings.

OBJECTIVE

The aim of this study was to conduct a systematic review and meta-analysis to compare electronic and conventional pain-related data collection methods with respect to pain score equivalence, data completeness, ease of use, efficiency, and acceptability between methods.

METHODS

We searched the Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica Database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) from database inception until November 2019. We included all peer-reviewed studies that compared electronic (any modality) and conventional (paper-, telephone-, or in-person-based) data capture methods for patient-reported pain data on one of the following outcomes: pain score equivalence, data completeness, ease of use, efficiency, and acceptability. We used random effects models to combine score equivalence data across studies that reported correlations or measures of agreement between electronic and conventional pain assessment methods.

RESULTS

A total of 53 unique studies were included in this systematic review, of which 21 were included in the meta-analysis. Overall, the pain scores reported electronically were congruent with those reported using conventional modalities, with the majority of studies (36/44, 82%) that reported on pain scores demonstrating this relationship. The weighted summary correlation coefficient of pain score equivalence from our meta-analysis was 0.92 (95% CI 0.88-0.95). Studies on data completeness, patient- or provider-reported ease of use, and efficiency generally indicated that electronic data capture methods were equivalent or superior to conventional methods. Most (19/23, 83%) studies that directly surveyed patients reported that the electronic format was the preferred data collection method.

CONCLUSIONS

Electronic pain-related data capture methods are comparable with conventional methods in terms of score equivalence, data completeness, ease, efficiency, and acceptability and, if the appropriate psychometric evaluations are in place, are a feasible means to collect pain data in clinical and research settings.

摘要

背景

评估疼痛最常用的方法是患者自我报告问卷。传统上,这些问卷是通过纸笔、电话或面对面的方式完成的,这可能会限制所收集数据的有效性。电子数据采集方法是一种在临床和研究环境中有效、可靠且可行地从患者那里收集疼痛相关数据的潜在方式。

目的

本研究的目的是进行系统评价和荟萃分析,以比较电子和传统疼痛相关数据收集方法在疼痛评分等效性、数据完整性、易用性、效率以及方法之间的可接受性方面的差异。

方法

我们检索了从数据库建立到2019年11月的医学文献分析和联机检索系统(MEDLINE)、医学文摘数据库(EMBASE)以及Cochrane对照试验中心注册库(CENTRAL)。我们纳入了所有比较电子(任何形式)和传统(基于纸质、电话或面对面)数据采集方法用于患者报告的疼痛数据的同行评审研究,这些研究涉及以下结果之一:疼痛评分等效性、数据完整性、易用性、效率和可接受性。我们使用随机效应模型来合并各研究中报告的电子和传统疼痛评估方法之间相关性或一致性测量的等效性评分数据。

结果

本系统评价共纳入53项独特研究,其中21项纳入荟萃分析。总体而言,电子报告的疼痛评分与使用传统方式报告的评分一致,大多数报告疼痛评分的研究(36/44,82%)表明了这种关系。我们荟萃分析中疼痛评分等效性的加权汇总相关系数为0.92(95%CI 0.88 - 0.95)。关于数据完整性、患者或提供者报告的易用性以及效率的研究总体表明,电子数据采集方法等同于或优于传统方法。大多数直接调查患者的研究(19/23,83%)报告电子格式是首选的数据收集方法。

结论

电子疼痛相关数据采集方法在评分等效性、数据完整性、易用性、效率和可接受性方面与传统方法相当,并且如果进行了适当的心理测量学评估,是在临床和研究环境中收集疼痛数据的可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ec/7351264/050ccf24b1a5/jmir_v22i6e16480_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验