Suppr超能文献

从免疫库测序推断免疫反应。

Inferring the immune response from repertoire sequencing.

机构信息

Laboratoire de physique de l'École normale supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, Paris, France.

Mila, Université de Montréal, Montreal, Canada.

出版信息

PLoS Comput Biol. 2020 Apr 29;16(4):e1007873. doi: 10.1371/journal.pcbi.1007873. eCollection 2020 Apr.

Abstract

High-throughput sequencing of B- and T-cell receptors makes it possible to track immune repertoires across time, in different tissues, and in acute and chronic diseases or in healthy individuals. However, quantitative comparison between repertoires is confounded by variability in the read count of each receptor clonotype due to sampling, library preparation, and expression noise. Here, we present a general Bayesian approach to disentangle repertoire variations from these stochastic effects. Using replicate experiments, we first show how to learn the natural variability of read counts by inferring the distributions of clone sizes as well as an explicit noise model relating true frequencies of clones to their read count. We then use that null model as a baseline to infer a model of clonal expansion from two repertoire time points taken before and after an immune challenge. Applying our approach to yellow fever vaccination as a model of acute infection in humans, we identify candidate clones participating in the response.

摘要

高通量测序 B 细胞和 T 细胞受体使得在不同的组织中,在急性和慢性疾病或健康个体中追踪免疫受体库成为可能。然而,由于采样、文库制备和表达噪声,每个受体克隆型的读数计数的可变性会干扰受体库的定量比较。在这里,我们提出了一种通用的贝叶斯方法来将受体库的变化与这些随机效应区分开来。使用重复实验,我们首先展示了如何通过推断克隆大小的分布以及将克隆的真实频率与其读数计数相关联的显式噪声模型来学习读数计数的自然变异性。然后,我们使用该零模型作为基线,从免疫挑战前后采集的两个时间点的受体库中推断克隆扩增模型。将我们的方法应用于黄热病疫苗接种作为人类急性感染的模型,我们确定了参与反应的候选克隆。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验