Hu Le, Shang Chaoqun, Wang Xin, Zhou Guofu
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 China
National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University Guangzhou 510006 China.
Nanoscale Adv. 2020 Nov 10;3(1):231-239. doi: 10.1039/d0na00897d. eCollection 2021 Jan 7.
Transition metal chalcogenides especially Fe-based selenides for sodium storage have the advantages of high electric conductivity, low cost, abundant active sites, and high theoretical capacity. Herein, we proposed a facile synthesis of FeSe embedded in carbon nanofibers (denoted as FeSe-NCFs). The FeSe-NCFs with a 1D electron transfer network can facilitate Na transportation to ensure fast reaction kinetics. Moreover, FeSe encapsulated in carbon nanofibers, FeSe-NCFs, can effectively adapt the volume variation to keep structural integrity during a continuous Na insertion and extraction process. As a result, FeSe-NCFs present improved rate performance and remarkable cycling stability for sodium storage. The FeSe-NCFs exhibit practical feasibility with a reasonable specific capacity of 109 mA h g after 200 cycles and a favorable rate capability of 136 mA h g at a high rate of 2 A g when coupled with NaV(PO) to assemble full sodium ion batteries.
过渡金属硫族化合物,尤其是用于钠存储的铁基硒化物,具有高电导率、低成本、丰富的活性位点和高理论容量等优点。在此,我们提出了一种简便的合成方法,制备嵌入碳纳米纤维中的FeSe(表示为FeSe-NCFs)。具有一维电子转移网络的FeSe-NCFs能够促进钠的传输,以确保快速的反应动力学。此外,封装在碳纳米纤维中的FeSe,即FeSe-NCFs,能够有效地适应体积变化,在连续的钠插入和脱出过程中保持结构完整性。结果,FeSe-NCFs在钠存储方面表现出改善的倍率性能和显著的循环稳定性。当与NaV(PO)耦合组装全钠离子电池时,FeSe-NCFs在200次循环后具有109 mA h g的合理比容量,在2 A g的高电流密度下具有136 mA h g的良好倍率性能,展现出实际可行性。