Mwanake R M, Gettel G M, Aho K S, Namwaya D W, Masese F O, Butterbach-Bahl K, Raymond P A
IHE-Delft Institute for Water Education Delft The Netherlands.
Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) Garmisch-Partenkirchen Germany.
J Geophys Res Biogeosci. 2019 Nov;124(11):3491-3506. doi: 10.1029/2019JG005063. Epub 2019 Nov 21.
Anthropogenic activities have led to increases in nitrous oxide (NO) emissions from river systems, but there are large uncertainties in estimates due to lack of data in tropical rivers and rapid increase in human activity. We assessed the effects of land use and river size on NO flux and concentration in 46 stream sites in the Mara River, Kenya, during the transition from the wet (short rains) to dry season, November 2017 to January 2018. Flux estimates were similar to other studies in tropical and temperate systems, but in contrast to other studies, land use was more related to NO concentration and flux than stream size. Agricultural stream sites had the highest fluxes (26.38 ± 5.37 NO-N μg·m·hr) compared to both forest and livestock sites (5.66 ± 1.38 NO-N μg·m·hr and 6.95 ± 2.96 NO-N μg·m·hr, respectively). NO concentrations in forest and agriculture streams were positively correlated to stream carbon dioxide (CO-C) but showed a negative correlation with dissolved organic carbon, and the dissolved organic carbon:dissolved inorganic nitrogen ratio. NO concentration in the livestock sites had a negative relationship with CO-C and a higher number of negative fluxes. We concluded that in-stream chemoautotrophic nitrification was likely the main biogeochemical process driving NO production in agricultural and forest streams, whereas complete denitrification led to the consumption of NO in the livestock stream sites. These results point to the need to better understand the relative importance of nitrification and denitrification in different habitats in producing NO and for process-based studies.
人为活动导致河流系统中一氧化二氮(NO)排放量增加,但由于热带河流缺乏数据以及人类活动迅速增加,估计存在很大的不确定性。在2017年11月至2018年1月从雨季(短雨期)向旱季过渡期间,我们评估了肯尼亚马拉河46个溪流站点的土地利用和河流大小对NO通量和浓度的影响。通量估计与热带和温带系统中的其他研究相似,但与其他研究不同的是,土地利用比溪流大小与NO浓度和通量的关系更大。与森林和畜牧站点相比,农业溪流站点的通量最高(26.38±5.37 NO-N μg·m·hr),森林和畜牧站点的通量分别为(5.66±1.38 NO-N μg·m·hr和6.95±2.96 NO-N μg·m·hr)。森林和农业溪流中的NO浓度与溪流二氧化碳(CO-C)呈正相关,但与溶解有机碳以及溶解有机碳:溶解无机氮比率呈负相关。畜牧站点的NO浓度与CO-C呈负相关,负通量数量更多。我们得出结论,溪流中的化学自养硝化作用可能是农业和森林溪流中驱动NO产生的主要生物地球化学过程,而完全反硝化作用导致畜牧溪流站点中NO的消耗。这些结果表明需要更好地了解硝化作用和反硝化作用在不同生境中产生NO的相对重要性以及进行基于过程的研究。