IEEE Trans Cybern. 2022 Feb;52(2):772-783. doi: 10.1109/TCYB.2019.2921254. Epub 2022 Feb 16.
The actuator failure compensation control problem of robotic systems possessing dynamic uncertainties has been investigated in this paper. Control design against partial loss of effectiveness (PLOE) and total loss of effectiveness (TLOE) of the actuator are considered and described, respectively, and a disturbance observer (DO) using neural networks is constructed to attenuate the influence of the unknown disturbance. Regarding the prescribed error bounds as time-varying constraints, the control design method based on barrier Lyapunov function (BLF) is used to strictly guarantee both the steady-state performance and the transient performance. A simulation study on a two-link planar manipulator verifies the effectiveness of the proposed controllers in dealing with the prescribed performance, the system uncertainties, and the unknown actuator failure simultaneously. Implementation on a Baxter robot gives an experimental verification of our controller.
本文研究了具有动态不确定性的机器人系统的执行器故障补偿控制问题。分别考虑了针对执行器部分失效(PLOE)和完全失效(TLOE)的控制设计,并构建了一个使用神经网络的干扰观测器(DO)来减轻未知干扰的影响。针对规定的误差边界作为时变约束,基于障碍李雅普诺夫函数(BLF)的控制设计方法被用来严格保证稳态性能和瞬态性能。对一个两连杆平面机械手的仿真研究验证了所提出的控制器在处理规定性能、系统不确定性和未知执行器故障方面的有效性。在 Baxter 机器人上的实现给出了我们控制器的实验验证。