Suppr超能文献

具有输入非线性和干扰的不确定连续体机器人的自适应逼近滑模控制

Adaptive Approximation Sliding-Mode Control of an Uncertain Continuum Robot with Input Nonlinearities and Disturbances.

作者信息

Xu Shoulin

机构信息

Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai, China.

出版信息

Appl Bionics Biomech. 2024 Mar 6;2024:8533606. doi: 10.1155/2024/8533606. eCollection 2024.

Abstract

This paper develops an adaptive nonsingular fast terminal sliding-mode control (ANFTSMC) scheme for the continuum robot subjected to uncertain dynamics, external disturbances, and input nonlinearities (e.g., actuator deadzones/faults). Concretely, a function approximation technique (FAT) is utilized to estimate unknown robot dynamics and actuator deadzones/faults online. Furthermore, a disturbance observer (DO) is devised to make up for unknown external disturbances. Then, an ANFTSMC scheme combined with FAT and DO is developed, to expedite the restoration of the stability for the continuum robot. The proposed ANFTSMC not only can retain the benefits of traditional terminal sliding-mode control (TSMC), containing easy enforcement, quick response, and robustness to uncertainties but also dispose of the latent singularity for traditional faster TSMC designs. Afterward, the simulation results show that the proposed controller can effectively improve the trajectory tracking accuracy of the continuum robot, and the tracking root-mean-square errors are 0.0115 and 0.0128 rad. Finally, the effectiveness of ANFTSMC scheme is validated by experiments.

摘要

本文针对受不确定动力学、外部干扰和输入非线性(如执行器死区/故障)影响的连续体机器人,提出了一种自适应非奇异快速终端滑模控制(ANFTSMC)方案。具体而言,采用函数逼近技术(FAT)在线估计机器人未知动力学和执行器死区/故障。此外,设计了一种干扰观测器(DO)来补偿未知外部干扰。然后,结合FAT和DO开发了一种ANFTSMC方案,以加速连续体机器人稳定性的恢复。所提出的ANFTSMC不仅可以保留传统终端滑模控制(TSMC)的优点,包括易于实施、快速响应和对不确定性的鲁棒性,而且还消除了传统更快TSMC设计中的潜在奇异性。之后,仿真结果表明,所提出的控制器能够有效提高连续体机器人的轨迹跟踪精度,跟踪均方根误差分别为0.0115和0.0128 rad。最后,通过实验验证了ANFTSMC方案的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验