Suppr超能文献

从污染土壤中分离出的新型真菌青霉属DC-F11的生物修复潜力及抗汞(II)机制

The bioremediation potentials and mercury(II)-resistant mechanisms of a novel fungus Penicillium spp. DC-F11 isolated from contaminated soil.

作者信息

Chang Junjun, Shi Yu, Si Guangzheng, Yang Qingchen, Dong Jia, Chen Jinquan

机构信息

Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, China; International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management of Yunnan, Kunming, 650091, China.

Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650091, China.

出版信息

J Hazard Mater. 2020 Sep 5;396:122638. doi: 10.1016/j.jhazmat.2020.122638. Epub 2020 Apr 7.

Abstract

Bioremediation of Hg-contaminated soil using microbe-based strategies is a promising and efficient method as it is inexpensive and not harmful to the environment. In this study, a novel Hg(II)-volatilizing fungus Penicillium spp., DC-F11 was isolated and showed bioremediation potential for reducing Hg(II) phytotoxicity, total Hg, and exchangeable Hg in Hg(II)-polluted soil. Subsequently, the mechanisms of Hg(II) volatilization and resistance involved were investigated using multiple complementary techniques. The fungal cells could detoxify Hg(II) by extracellular sequestration via adsorption and precipitation. Moreover, a comparative transcriptome analysis uncovered the primary intracellular adaptive responses of the DC-F11 to Hg(II) stress, including mer-mediated detoxification system, thiol compound metabolism, and oxidative stress defense and damage repair metabolism. These results showed that the resistance of DC-F11 to Hg(II) was generally a multisystem collaborative process. Here, we report, for the first time, that the mer-mediated detoxification system was responsible for Hg(II) volatilization in fungus. These findings provide a better understanding of the mechanisms involved in Hg(II) volatilization and resistance that occur in fungi and also provide a strong theoretical basis for the future application of fungi in the bioremediation of Hg-polluted environments.

摘要

利用基于微生物的策略对汞污染土壤进行生物修复是一种很有前景且高效的方法,因为它成本低廉且对环境无害。在本研究中,分离出了一种新型的汞(II)挥发真菌青霉属菌株DC - F11,它在降低汞(II)污染土壤中汞(II)的植物毒性、总汞和可交换汞方面显示出生物修复潜力。随后,使用多种互补技术研究了汞(II)挥发和抗性的机制。真菌细胞可以通过吸附和沉淀的细胞外螯合作用来解毒汞(II)。此外,比较转录组分析揭示了DC - F11对汞(II)胁迫的主要细胞内适应性反应,包括汞抗性操纵子介导的解毒系统、硫醇化合物代谢以及氧化应激防御和损伤修复代谢。这些结果表明,DC - F11对汞(II)的抗性通常是一个多系统协同的过程。在此,我们首次报道汞抗性操纵子介导的解毒系统负责真菌中的汞(II)挥发。这些发现有助于更好地理解真菌中发生的汞(II)挥发和抗性机制,也为未来真菌在汞污染环境生物修复中的应用提供了有力的理论基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验