内生真菌刺激了 (植物名)药用次生代谢物的浓度。
Endophytic fungi stimulate the concentration of medicinal secondary metabolites in thunb.
机构信息
Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang Guizhou, China.
School of Life Science, Guizhou Normal University, Guiyang Guizhou, China.
出版信息
Plant Signal Behav. 2021 Sep 2;16(9):1929731. doi: 10.1080/15592324.2021.1929731. Epub 2021 Jun 6.
Endophytic fungi usually establish a symbiotic relationship with the host plant and affect its growth. In order to evaluate the impact of endophytic fungi on the Chinese herbal medicinal plant Thunb., three endophytes isolated from the rhizomes of , namely (IL), unidentified fungal sp. (UF), and (PC), were co-cultured individually with in sterile soil for 60 days. Analysis of the results showed that the endophytes stimulated the host plant in different ways: IL increased the growth of rhizomes and the accumulation of most of the phenolics and volatiles, UF promoted the accumulation of the medicinal compounds afzelin, decanal, 2-undecanone, and borneol without influencing host plant growth, and PC increased the fresh weight, total leaf area and height of the plants, as well as the growth of the rhizomes, but had only a small effect on the concentration of major secondary metabolites. Our results proved that the endophytic fungi had potential practical value in terms of the production of Chinese herbal medicines, having the ability to improve the yield and accumulation of medicinal metabolites.
内生真菌通常与宿主植物建立共生关系,并影响其生长。为了评估内生真菌对中草药 Thunb. 的影响,从其根茎中分离出的三种内生真菌,即 (IL)、未鉴定真菌 sp.(UF)和 (PC),分别与 在无菌土壤中共同培养 60 天。结果分析表明,内生真菌以不同的方式刺激宿主植物:IL 增加了根茎的生长和大多数酚类和挥发性物质的积累,UF 促进了药用化合物 afzelin、癸醛、2-十一酮和龙脑的积累,而不影响宿主植物的生长,PC 增加了植物的鲜重、总叶面积和高度,以及根茎的生长,但对主要次生代谢物的浓度影响较小。我们的结果证明,内生真菌在中草药生产方面具有潜在的实用价值,具有提高药用代谢物产量和积累的能力。
相似文献
Plant Signal Behav. 2021-9-2
Pak J Pharm Sci. 2016-9
Nat Prod Res. 2024-10-12
World J Microbiol Biotechnol. 2021-12-8
J Ethnopharmacol. 2018-3-30
引用本文的文献
Front Microbiol. 2025-3-21
Life (Basel). 2023-8-6
本文引用的文献
New Phytol. 2002-5
Front Plant Sci. 2020-11-4
Complement Ther Clin Pract. 2020-8
Nat Rev Microbiol. 2020-11
Biomed Res Int. 2020
Sci Rep. 2020-6-18