Fan Fengyan, Lei Yalin
School of Humanities and Economic Management, China University of Geosciences, Beijing 100083, China.
Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resource, Beijing 100083, China.
Transp Res D Transp Environ. 2016 Jan;42:135-145. doi: 10.1016/j.trd.2015.11.001. Epub 2015 Dec 10.
In the process of rapid development and urbanization in Beijing, identifying the potential factors of carbon emissions in the transportation sector is an important prerequisite to controlling carbon emissions. Based on the expanded Kaya identity, we built a multivariate generalized Fisher index (GFI) decomposition model to measure the influence of the energy structure, energy intensity, output value of per unit traffic turnover, transportation intensity, economic growth and population size on carbon emissions from 1995 to 2012 in the transportation sector of Beijing. Compared to most methods used in previous studies, the GFI model possesses the advantage of eliminating decomposition residuals, which enables it to display better decomposition characteristics (Ang et al., 2004). The results show: (i) The primary positive drivers of carbon emissions in the transportation sector include the economic growth, energy intensity and population size. The cumulative contribution of economic growth to transportation carbon emissions reaches 334.5%. (ii) The negative drivers are the transportation intensity and energy structure, while the transportation intensity is the main factor that restrains transportation carbon emissions. The energy structure displays a certain inhibition effect, but its inhibition is not obvious. (iii) The contribution rate of the output value of per unit traffic turnover on transportation carbon emissions appears as a flat "M". To suppress the growth of carbon emissions in transportation further, the government of Beijing should take the measures of promoting the development of new energy vehicles, limiting private vehicles' increase and promoting public transportation, evacuating non-core functions of Beijing and continuingly controlling population size.
在北京快速发展和城市化进程中,识别交通部门碳排放的潜在因素是控制碳排放的重要前提。基于扩展的卡亚恒等式,我们构建了一个多元广义费雪指数(GFI)分解模型,以衡量1995年至2012年能源结构、能源强度、单位交通周转量产值、交通强度、经济增长和人口规模对北京交通部门碳排放的影响。与以往研究中使用的大多数方法相比,GFI模型具有消除分解残差的优势,这使其能够展现出更好的分解特性(Ang等人,2004年)。结果表明:(i)交通部门碳排放的主要正向驱动因素包括经济增长、能源强度和人口规模。经济增长对交通碳排放的累计贡献率达到334.5%。(ii)负向驱动因素是交通强度和能源结构,而交通强度是抑制交通碳排放的主要因素。能源结构显示出一定的抑制作用,但其抑制作用并不明显。(iii)单位交通周转量产值对交通碳排放的贡献率呈现出一个平缓的“M”形。为进一步抑制交通领域碳排放的增长,北京市政府应采取推广新能源汽车发展、限制私家车增加、促进公共交通、疏解北京非核心功能以及持续控制人口规模等措施。