Suppr超能文献

通过磁性墨水的自动操控实现对3D打印微流控水凝胶的仿生重构。

Bioinspired reconfiguration of 3D printed microfluidic hydrogels via automated manipulation of magnetic inks.

作者信息

Mansoorifar Amin, Tahayeri Anthony, Bertassoni Luiz E

机构信息

Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA.

出版信息

Lab Chip. 2020 May 19;20(10):1713-1719. doi: 10.1039/d0lc00280a.

Abstract

One of the key components in controlling fluid streams in microfluidic devices is the valve and gating modules. In most situations, these components are fixed at specific locations, and a new reconfiguration of microchannels requires costly and laborious fabrication of new devices. In this study, inspired by the human vasculature microcapillary reconfiguration in response to blood transport requirements, the idea of reconfigurable gel microfluidic systems is presented for the first time. A simple approach is described to print microchannels in methacrylated gelatin (GelMA) hydrogels by using agarose fibers that are loaded with iron microparticles. The agarose fibers can then be used as valves, which are then manipulated using a permanent magnet, providing the reconfigurability of the system. The feasibility of agarose gels is tested with different iron microparticle loadings as well as their resistance to fluid flows. Further, it is shown that using this technique, multiple configurations, as well as reconfigurability, are possible from a single device. This work opens the framework to design more intricate and reconfigurable microfluidic devices, which will decrease the cost and size of the final product.

摘要

控制微流控设备中流体流动的关键组件之一是阀门和门控模块。在大多数情况下,这些组件固定在特定位置,而微通道的新重构需要耗费成本且费力地制造新设备。在本研究中,受人类脉管系统中微毛细血管根据血液运输需求进行重构的启发,首次提出了可重构凝胶微流控系统的概念。描述了一种简单的方法,即通过使用负载铁微粒的琼脂糖纤维在甲基丙烯酸化明胶(GelMA)水凝胶中打印微通道。然后,琼脂糖纤维可用作阀门,通过永久磁铁对其进行操作,从而实现系统的可重构性。测试了不同铁微粒负载量的琼脂糖凝胶的可行性及其对流体流动的阻力。此外,结果表明,使用该技术,单个设备可以实现多种配置以及可重构性。这项工作为设计更复杂、可重构的微流控设备打开了框架,这将降低最终产品的成本和尺寸。

相似文献

3
Sequential assembly of 3D perfusable microfluidic hydrogels.3D可灌注微流体水凝胶的顺序组装
J Mater Sci Mater Med. 2014 Nov;25(11):2491-500. doi: 10.1007/s10856-014-5270-9. Epub 2014 Jul 16.
5
Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.用于生物和生物医学构建体挤压打印的复合油墨。
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4009-4026. doi: 10.1021/acsbiomaterials.0c01158. Epub 2020 Nov 10.

本文引用的文献

2
Microfluidics for Advanced Drug Delivery Systems.用于先进药物递送系统的微流控技术
Curr Opin Chem Eng. 2015 Feb;7:101-112. doi: 10.1016/j.coche.2014.12.001. Epub 2015 Feb 4.
5
Microfluidics Based Point-of-Care Diagnostics.基于微流控技术的即时诊断。
Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700047. Epub 2017 Dec 18.
6
Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.比较三种(3D)打印平台的微流控性能。
Anal Chem. 2017 Apr 4;89(7):3858-3866. doi: 10.1021/acs.analchem.7b00136. Epub 2017 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验