Xiao Mingfei, Kang Boseok, Lee Seon Baek, Perdigão Luís M A, Luci Alex, Warr Daniel A, Senanayak Satyaprasad P, Nikolka Mark, Statz Martin, Wu Yutian, Sadhanala Aditya, Schott Sam, Carey Remington, Wang Qijing, Lee Mijung, Kim Chaewon, Onwubiko Ada, Jellett Cameron, Liao Hailiang, Yue Wan, Cho Kilwon, Costantini Giovanni, McCulloch Iain, Sirringhaus Henning
Optoelectronics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
Adv Mater. 2020 Jun;32(23):e2000063. doi: 10.1002/adma.202000063. Epub 2020 May 4.
Precise control of the microstructure in organic semiconductors (OSCs) is essential for developing high-performance organic electronic devices. Here, a comprehensive charge transport characterization of two recently reported rigid-rod conjugated polymers that do not contain single bonds in the main chain is reported. It is demonstrated that the molecular design of the polymer makes it possible to achieve an extended linear backbone structure, which can be directly visualized by high-resolution scanning tunneling microscopy (STM). The rigid structure of the polymers allows the formation of thin films with uniaxially aligned polymer chains by using a simple one-step solution-shear/bar coating technique. These aligned films show a high optical anisotropy with a dichroic ratio of up to a factor of 6. Transport measurements performed using top-gate bottom-contact field-effect transistors exhibit a high saturation electron mobility of 0.2 cm V s along the alignment direction, which is more than six times higher than the value reported in the previous work. This work demonstrates that this new class of polymers is able to achieve mobility values comparable to state-of-the-art n-type polymers and identifies an effective processing strategy for this class of rigid-rod polymer system to optimize their charge transport properties.
精确控制有机半导体(OSCs)的微观结构对于开发高性能有机电子器件至关重要。在此,报道了对两种最近报道的主链中不含单键的刚性棒状共轭聚合物的全面电荷传输特性研究。结果表明,聚合物的分子设计使其能够实现扩展的线性主链结构,这可以通过高分辨率扫描隧道显微镜(STM)直接观察到。聚合物的刚性结构允许通过简单的一步溶液剪切/刮涂技术形成具有单轴排列聚合物链的薄膜。这些排列的薄膜显示出高达6倍的二向色比的高光光学各向异性。使用顶栅底接触场效应晶体管进行的传输测量表明,沿排列方向的饱和电子迁移率高达0.2 cm² V⁻¹ s⁻¹,这比先前工作报道的值高出六倍多。这项工作表明,这类新型聚合物能够实现与最先进的n型聚合物相当的迁移率值,并确定了一种有效的加工策略,用于优化这类刚性棒状聚合物系统的电荷传输性能。