Suppr超能文献

环戊二噻吩-苯并噻二唑供体-受体聚合物作为高性能场效应晶体管的典型半导体

Cyclopentadithiophene-Benzothiadiazole Donor-Acceptor Polymers as Prototypical Semiconductors for High-Performance Field-Effect Transistors.

作者信息

Li Mengmeng, An Cunbin, Pisula Wojciech, Müllen Klaus

机构信息

Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.

Department of Molecular Physics, Faculty of Chemistry , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland.

出版信息

Acc Chem Res. 2018 May 15;51(5):1196-1205. doi: 10.1021/acs.accounts.8b00025. Epub 2018 Apr 17.

Abstract

Donor-acceptor (D-A) conjugated polymers are of great interest as organic semiconductors, because they offer a rational tailoring of the electronic properties by modification of the donor and acceptor units. Nowadays, D-A polymers exhibit field-effect mobilities on the order of 10-10 cm V s, while several examples showed a mobility over 10 cm V s. The development of cyclopentadithiophene-benzothiadiazole (CDT-BTZ) copolymers one decade ago represents an important step toward high-performance organic semiconductors for field-effect transistors. The significant rise in field-effect mobility of CDT-BTZ in comparison to the existing D-A polymers at that time opened the door to a new research field with a large number of novel D-A systems. From this point, the device performance of CDT-BTZ was gradually improved by a systematic optimization of the synthesis and polymer structure as well as by an efficient solution processing into long-range ordered thin films. The key aspect was a comprehensive understanding of the relation between polymer structure and solid-state organization. Due to their fundamental role for the field of D-A polymers in general, this Account will for the first time explicitly focus on prototypical CDT-BTZ polymers, while other reviews provide an excellent general overview on D-A polymers. The first part of this Account discusses strategies for improving the charge carrier transport, focusing on chemical aspects. Improved synthesis as an essential stage toward high purity, and high molecular weight is a prerequisite for molecular order. The modification of substituents is a further crucial feature to tune the CDT-BTZ packing and self-assembly. Linear alkyl side chains facilitate intermolecular π-stacking interactions, while branched ones increase solubility and alter the polymer packing. Additional control over the supramolecular organization of CDT-BTZ polymers is introduced by alkenyl substituents via their cis-trans isomerization. The last discussed chemical concept is based on heteroatom variation within the CDT unit. The relationships found experimentally for CDT-BTZ between polymer chemical structure, solid-state organization, and charge carrier transport are explained by means of theoretical simulations. Besides the effects of molecular design, the second part of this Account discusses the processing conditions from solution. The film microstructure, defined as a mesoscopic domain organization, is critically affected by solution processing. Suitable processing techniques allow the formation of a long-range order and a uniaxial orientation of the CDT-BTZ chains, thus lowering the trapping density of grain boundaries for charge carriers. For instance, alignment of the CDT-BTZ polymer by dip-coating yields films with a pronounced structural and electrical anisotropy and favors a fast migration of charge carriers along the conjugated backbones in the deposition direction. By using film compression with the assistance of an ionic liquid, one even obtains CDT-BTZ films with a band-like transport and a transistor hole mobility of 10 cm V s. This device performance is attributed to large domains in the compressed films being formed by CDT-BTZ with longer alkyl chains, which establish a fine balance between polymer interactions and growth kinetics during solvent evaporation. On the basis of the prototypical semiconductor CDT-BTZ, this Account provides general guidelines for achieving high-performance polymer transistors by taking into account the subtle balance of synthetic protocol, molecular design, and processing.

摘要

供体-受体(D-A)共轭聚合物作为有机半导体备受关注,因为通过修饰供体和受体单元可以合理地调整其电子性质。如今,D-A聚合物的场效应迁移率约为10⁻¹⁰ cm² V⁻¹ s⁻¹,不过也有一些例子显示迁移率超过10 cm² V⁻¹ s⁻¹。十年前环戊二噻吩-苯并噻二唑(CDT-BTZ)共聚物的研发是迈向用于场效应晶体管的高性能有机半导体的重要一步。与当时现有的D-A聚合物相比,CDT-BTZ的场效应迁移率显著提高,为大量新型D-A体系开启了一个新的研究领域。从那时起,通过对合成和聚合物结构进行系统优化以及通过高效的溶液加工形成长程有序薄膜,CDT-BTZ的器件性能逐渐得到改善。关键在于全面理解聚合物结构与固态组织之间的关系。由于它们在D-A聚合物领域的基础性作用,本综述将首次明确聚焦于典型的CDT-BTZ聚合物,而其他综述则对D-A聚合物进行了出色的全面概述。本综述的第一部分讨论了改善电荷载流子传输的策略,重点是化学方面。改进合成作为实现高纯度和高分子量的关键阶段,是分子有序排列的前提条件。取代基的修饰是调整CDT-BTZ堆积和自组装的另一个关键特征。线性烷基侧链促进分子间π-堆积相互作用,而支链烷基则增加溶解度并改变聚合物堆积。烯基取代基通过顺反异构化对CDT-BTZ聚合物的超分子组织进行额外控制。最后讨论的化学概念基于CDT单元内杂原子的变化。通过理论模拟解释了在CDT-BTZ中实验发现的聚合物化学结构、固态组织和电荷载流子传输之间的关系。除了分子设计的影响外,本综述的第二部分讨论了溶液加工条件。定义为介观域组织的薄膜微观结构受到溶液加工的严重影响。合适的加工技术能够形成CDT-BTZ链的长程有序和单轴取向,从而降低电荷载流子的晶界俘获密度。例如,通过浸涂使CDT-BTZ聚合物取向可得到具有明显结构和电学各向异性的薄膜,并有利于电荷载流子沿共轭主链在沉积方向上快速迁移。借助离子液体进行薄膜压缩,甚至可以获得具有带状传输和10 cm² V⁻¹ s⁻¹的晶体管空穴迁移率的CDT-BTZ薄膜。这种器件性能归因于压缩薄膜中由具有较长烷基链的CDT-BTZ形成的大区域,它们在溶剂蒸发过程中在聚合物相互作用和生长动力学之间建立了良好的平衡。基于典型半导体CDT-BTZ,本综述通过考虑合成方案、分子设计和加工之间的微妙平衡,为实现高性能聚合物晶体管提供了一般指导原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验