Centre of Nanohealth, Swansea University Medical School, Swansea, United Kingdom.
Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
Stem Cells Dev. 2020 Jul;29(14):882-894. doi: 10.1089/scd.2019.0209. Epub 2020 May 28.
Articular cartilage contains a subpopulation of tissue-specific progenitors that are an ideal cell type for cell therapies and generating neocartilage for tissue engineering applications. However, it is unclear whether the standard chondrogenic medium using transforming growth factor beta (TGFβ) isoforms is optimal to differentiate these cells. We therefore used pellet culture to screen progenitors from immature bovine articular cartilage with a number of chondrogenic factors and discovered that bone morphogenetic protein-9 (BMP9) precociously induces their differentiation. This difference was apparent with toluidine blue staining and confirmed by biochemical and transcriptional analyses with BMP9-treated progenitors exhibiting 11-fold and 5-fold greater aggrecan and collagen type II (COL2A1) gene expression than TGFβ1-treated progenitors. Quantitative gene expression analysis over 14 days highlighted the rapid and phased nature of BMP9-induced chondrogenesis with sequential activation of aggrecan then collagen type II, and negligible collagen type X gene expression. The extracellular matrix of TGFβ1-treated progenitors analyzed using atomic force microscopy was fibrillar and stiff whist BMP9-induced matrix of cells more compliant and correspondingly less fibrillar. Polarized light microscopy revealed an annular pattern of collagen fibril deposition typified by TGFβ1-treated pellets, whereas BMP9-treated pellets displayed a birefringence pattern that was more anisotropic. Remarkably, differentiated immature chondrocytes incubated as high-density cultures in vitro with BMP9 generated a pronounced anisotropic organization of collagen fibrils indistinguishable from mature adult articular cartilage, with cells in deeper zones arranged in columnar manner. This contrasted with cells grown with TGFβ1, where a concentric pattern of collagen fibrils was visualized within tissue pellets. In summary, BMP9 is a potent chondrogenic factor for articular cartilage progenitors and is also capable of inducing morphogenesis of adult-like cartilage, a highly desirable attribute for in vitro tissue-engineered cartilage.
关节软骨包含一个组织特异性祖细胞亚群,它们是细胞治疗和生成用于组织工程应用的新软骨的理想细胞类型。然而,目前尚不清楚使用转化生长因子β(TGFβ)同工型的标准软骨形成培养基是否是分化这些细胞的最佳选择。因此,我们使用微球培养法筛选了来自未成熟牛关节软骨的祖细胞,并使用多种软骨形成因子进行筛选,发现骨形态发生蛋白-9(BMP9)可提前诱导其分化。通过甲苯胺蓝染色可以明显看出这种差异,并通过对 BMP9 处理的祖细胞进行生化和转录分析得到证实,与 TGFβ1 处理的祖细胞相比,BMP9 处理的祖细胞的聚集蛋白聚糖和 II 型胶原(COL2A1)基因表达分别增加了 11 倍和 5 倍。14 天的定量基因表达分析突出了 BMP9 诱导的软骨形成的快速和分阶段的性质,依次激活聚集蛋白聚糖,然后是 II 型胶原,而 COL10A1 基因表达可忽略不计。原子力显微镜分析显示,TGFβ1 处理的祖细胞的细胞外基质呈纤维状且坚硬,而 BMP9 诱导的基质则更具弹性,相应地纤维状较少。偏光显微镜显示出 TGFβ1 处理的微球中典型的胶原纤维沉积的环形图案,而 BMP9 处理的微球则显示出各向异性更强的双折射图案。值得注意的是,在体外以高密度培养物与 BMP9 孵育的分化的未成熟软骨细胞产生了与成熟的成人关节软骨无法区分的明显各向异性的胶原纤维组织,较深层的细胞呈柱状排列。这与用 TGFβ1 培养的细胞形成鲜明对比,在组织微球中观察到胶原纤维的同心图案。总之,BMP9 是关节软骨祖细胞的一种有效的软骨形成因子,并且还能够诱导类似成人的软骨形态发生,这是体外组织工程软骨的一个非常理想的特性。