IEEE Trans Biomed Eng. 2021 Jan;68(1):236-246. doi: 10.1109/TBME.2020.2991399. Epub 2020 Dec 21.
Global Maxwell Tomography (GMT) is a recently introduced volumetric technique for noninvasive estimation of electrical properties (EP) from magnetic resonance measurements. Previous work evaluated GMT using ideal radiofrequency (RF) excitations. The aim of this simulation study was to assess GMT performance with a realistic RF coil.
We designed a transmit-receive RF coil with 8 decoupled channels for 7T head imaging. We calculated the RF transmit field ( B) inside heterogeneous head models for different RF shimming approaches, and used them as input for GMT to reconstruct EP for all voxels.
Coil tuning/decoupling remained relatively stable when the coil was loaded with different head models. Mean error in EP estimation changed from [Formula: see text] to [Formula: see text] and from [Formula: see text] to [Formula: see text] for relative permittivity and conductivity, respectively, when changing head model without re-tuning the coil. Results slightly improved when an SVD-based RF shimming algorithm was applied, in place of excitation with one coil at a time. Despite errors in EP, RF transmit field ( B) and absorbed power could be predicted with less than [Formula: see text] error over the entire head. GMT could accurately detect a numerically inserted tumor.
This work demonstrates that GMT can reliably reconstruct EP in realistic simulated scenarios using a tailored 8-channel RF coil design at 7T. Future work will focus on construction of the coil and optimization of GMT's robustness to noise, to enable in-vivo GMT experiments.
GMT could provide accurate estimations of tissue EP, which could be used as biomarkers and could enable patient-specific estimation of RF power deposition, which is an unsolved problem for ultra-high-field magnetic resonance imaging.
全球麦克斯韦尔层析成像(GMT)是一种最近引入的容积技术,用于从磁共振测量中无创估计电特性(EP)。以前的工作使用理想的射频(RF)激发评估了 GMT。本模拟研究的目的是使用现实的 RF 线圈评估 GMT 的性能。
我们设计了一个具有 8 个解耦通道的发射-接收 RF 线圈,用于 7T 头部成像。我们为不同的 RF 调谐方法计算了不均匀头部模型中的 RF 发射场(B),并将其用作 GMT 的输入,以重建所有体素的 EP。
当线圈加载不同的头部模型时,调谐/解耦的平均值相对稳定。当不重新调谐线圈而改变头部模型时,EP 估计的平均误差从[公式:见正文]变为[公式:见正文],相对介电常数和电导率的误差分别为[公式:见正文]和[公式:见正文]。当应用基于 SVD 的 RF 调谐算法代替逐个线圈激发时,结果略有改善。尽管 EP 存在误差,但在整个头部范围内,RF 发射场(B)和吸收功率可以以小于[公式:见正文]的误差来预测。GMT 可以准确检测到数值插入的肿瘤。
这项工作表明,GMT 可以使用定制的 7T 8 通道 RF 线圈设计在现实的模拟场景中可靠地重建 EP。未来的工作将集中于线圈的构建和 GMT 对噪声的稳健性优化,以实现超高场磁共振成像中的体内 GMT 实验。
GMT 可以提供组织 EP 的准确估计值,这可以用作生物标志物,并可以实现 RF 功率沉积的患者特异性估计,这是超高场磁共振成像中未解决的问题。