Suppr超能文献

基于时空特征的大坝安全监测系统传感器网络划分。

Spatial-Temporal Features Based Sensor Network Partition in Dam Safety Monitoring System.

机构信息

College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 211100, China.

Centre of Research and Development, Huaneng Lancang River Hydropower Co., Ltd., Kunming 650214, China.

出版信息

Sensors (Basel). 2020 Apr 29;20(9):2517. doi: 10.3390/s20092517.

Abstract

Many various types of sensors have been installed to monitor the deformation and stress in the dam structure. It is difficult to directly evaluate the operation status of the dam structure based on the massive monitoring data. The sensor network is divided into multiple regions according to the design specifications, simulation data, and engineering experiences. The local results from sub-regions are integrated to achieve overall evaluation. However, it ignores the spatial distribution of sensors and the variation of time series, which cannot meet the real-time evaluation for the dam safety monitoring. If the network partitions can provide the preliminary foundation for analyzing the dynamic change laws of the dam's working conditions in a real-way, we should consider the similarity of structure and stresses in the local region of the dam and the correlation among the monitoring data. A time-series denoising autoencoder (TSDA) is proposed to represent the spatial and temporal features of the nodes by compressing high-dimensional monitoring data. Then, a network partitioning algorithm (NPA) based on spatial-temporal features based on the TSDA is presented. The NPA ensures that the partition results can support the analysis of the physical change laws by introducing the auxiliary objective variable to optimize the network partition objective function. Experimental results on the public datasets and a real dataset from an arch dam demonstrate that the proposed network partition algorithm NPA can achieve better partition performance than TSDA+K-Means and TSDA+GMM. The NPA can improve the silhouette coefficient by 45.1% and 58.4% higher than the TSDA+K-Means and TSDA+GMM, respectively. The NPA can increase the Calinski-Harabaz Index by 30.8% and 61.6%, respectively.

摘要

已经安装了许多不同类型的传感器来监测大坝结构的变形和应力。根据大量的监测数据,很难直接评估大坝结构的运行状况。传感器网络根据设计规范、模拟数据和工程经验分为多个区域。将子区域的局部结果进行集成,以实现整体评估。然而,这种方法忽略了传感器的空间分布和时间序列的变化,无法满足大坝安全监测的实时评估要求。如果网络分区能够为实时分析大坝工作条件的动态变化规律提供初步基础,就应该考虑大坝局部区域的结构和应力相似性以及监测数据之间的相关性。为此,提出了一种基于时间序列去噪自编码器(TSDA)的网络分区算法(NPA)。该算法通过压缩高维监测数据来表示节点的时空特征。然后,提出了一种基于时空特征的网络分区算法(NPA)。该算法通过引入辅助目标变量来优化网络分区目标函数,从而保证分区结果能够支持物理变化规律的分析。在公共数据集和拱坝的真实数据集上的实验结果表明,所提出的网络分区算法 NPA 可以实现比 TSDA+K-Means 和 TSDA+GMM 更好的分区性能。NPA 可以分别将轮廓系数提高 45.1%和 58.4%,比 TSDA+K-Means 和 TSDA+GMM 分别提高 30.8%和 61.6%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验