College of Computer Science, Sichuan University, Chengdu 610065, China.
College of Cybersecurity, Sichuan University, Chengdu 610065, China.
Sensors (Basel). 2020 Apr 30;20(9):2547. doi: 10.3390/s20092547.
Convolution neural network (CNN)-based detectors have shown great performance on ship detections of synthetic aperture radar (SAR) images. However, the performance of current models has not been satisfactory enough for detecting multiscale ships and small-size ones in front of complex backgrounds. To address the problem, we propose a novel SAR ship detector based on CNN, which consist of three subnetworks: the Fusion Feature Extractor Network (FFEN), Region Proposal Network (RPN), and Refine Detection Network (RDN). Instead of using a single feature map, we fuse feature maps in bottom-up and top-down ways and generate proposals from each fused feature map in FFEN. Furthermore, we further merge features generated by the region-of-interest (RoI) pooling layer in RDN. Based on the feature representation strategy, the CNN framework constructed can significantly enhance the location and semantics information for the multiscale ships, in particular for the small ships. On the other hand, the residual block is introduced to increase the network depth, through which the detection precision could be further improved. The public SAR ship dataset (SSDD) and China Gaofen-3 satellite SAR image are used to validate the proposed method. Our method shows excellent performance for detecting the multiscale and small-size ships with respect to some competitive models and exhibits high potential in practical application.
基于卷积神经网络(CNN)的探测器在合成孔径雷达(SAR)图像的船舶检测方面表现出了优异的性能。然而,当前模型的性能还不够令人满意,无法检测 SAR 图像中复杂背景下的多尺度船舶和小尺寸船舶。为了解决这个问题,我们提出了一种新的基于 CNN 的 SAR 船舶探测器,它由三个子网组成:融合特征提取网络(FFEN)、区域提议网络(RPN)和精炼检测网络(RDN)。我们采用了自底向上和自顶向下的融合方式,从 FFEN 中的每个融合特征图生成提议,而不是使用单个特征图。此外,我们还进一步融合了 RDN 中的感兴趣区域(RoI)池化层生成的特征。基于这种特征表示策略,所构建的 CNN 框架可以显著增强对多尺度船舶,特别是小船舶的位置和语义信息。另一方面,我们引入了残差块来增加网络深度,从而进一步提高检测精度。我们使用公共 SAR 船舶数据集(SSDD)和中国高分三号卫星 SAR 图像来验证所提出的方法。与一些竞争模型相比,我们的方法在检测多尺度和小尺寸船舶方面表现出了优异的性能,在实际应用中具有很高的潜力。