Suppr超能文献

利用 CpG 和非 CpG DNA 甲基化标记物构建小鼠干细胞多能性预测模型。

Prediction model construction of mouse stem cell pluripotency using CpG and non-CpG DNA methylation markers.

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju, 61005, Republic of Korea.

出版信息

BMC Bioinformatics. 2020 May 4;21(1):175. doi: 10.1186/s12859-020-3448-3.

Abstract

BACKGROUND

Genome-wide studies of DNA methylation across the epigenetic landscape provide insights into the heterogeneity of pluripotent embryonic stem cells (ESCs). Differentiating into embryonic somatic and germ cells, ESCs exhibit varying degrees of pluripotency, and epigenetic changes occurring in this process have emerged as important factors explaining stem cell pluripotency.

RESULTS

Here, using paired scBS-seq and scRNA-seq data of mice, we constructed a machine learning model that predicts degrees of pluripotency for mouse ESCs. Since the biological activities of non-CpG markers have yet to be clarified, we tested the predictive power of CpG and non-CpG markers, as well as a combination thereof, in the model. Through rigorous performance evaluation with both internal and external validation, we discovered that a model using both CpG and non-CpG markers predicted the pluripotency of ESCs with the highest prediction performance (0.956 AUC, external test). The prediction model consisted of 16 CpG and 33 non-CpG markers. The CpG and most of the non-CpG markers targeted depletions of methylation and were indicative of cell pluripotency, whereas only a few non-CpG markers reflected accumulations of methylation. Additionally, we confirmed that there exists the differing pluripotency between individual developmental stages, such as E3.5 and E6.5, as well as between induced mouse pluripotent stem cell (iPSC) and somatic cell.

CONCLUSIONS

In this study, we investigated CpG and non-CpG methylation in relation to mouse stem cell pluripotency and developed a model thereon that successfully predicts the pluripotency of mouse ESCs.

摘要

背景

对表观遗传景观中的全基因组 DNA 甲基化进行研究,可深入了解多能胚胎干细胞(ESCs)的异质性。ESCs 可分化为胚胎体和生殖细胞,表现出不同程度的多能性,而在此过程中发生的表观遗传变化已成为解释干细胞多能性的重要因素。

结果

在这里,我们使用配对的 scBS-seq 和 scRNA-seq 数据对小鼠进行研究,构建了一个可预测小鼠 ESCs 多能性程度的机器学习模型。由于非 CpG 标记物的生物学活性尚未得到阐明,因此我们测试了模型中 CpG 和非 CpG 标记物及其组合的预测能力。通过内部和外部验证的严格性能评估,我们发现使用 CpG 和非 CpG 标记物的模型可预测 ESCs 的多能性,其预测性能最高(外部测试的 AUC 为 0.956)。该预测模型由 16 个 CpG 和 33 个非 CpG 标记物组成。CpG 和大多数非 CpG 标记物针对的是去甲基化,并且与细胞多能性相关,而只有少数非 CpG 标记物反映了甲基化的积累。此外,我们还证实了个体发育阶段之间存在不同的多能性,例如 E3.5 和 E6.5 之间,以及诱导的小鼠多能干细胞(iPSC)和体细胞之间。

结论

在这项研究中,我们研究了 CpG 和非 CpG 甲基化与小鼠干细胞多能性的关系,并在此基础上开发了一个可成功预测小鼠 ESCs 多能性的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f95f/7199378/0d52263222b6/12859_2020_3448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验