Suppr超能文献

景天酸代谢保卫细胞阴离子通道活性随转录丰度变化,并受到质外体苹果酸的抑制。

Crassulacean acid metabolism guard cell anion channel activity follows transcript abundance and is suppressed by apoplastic malate.

作者信息

Lefoulon Cécile, Boxall Susanna F, Hartwell James, Blatt Michael R

机构信息

Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.

Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool,, L69 7ZB, UK.

出版信息

New Phytol. 2020 Sep;227(6):1847-1857. doi: 10.1111/nph.16640. Epub 2020 Jun 16.

Abstract

Plants utilising crassulacean acid metabolism (CAM) concentrate CO around RuBisCO while reducing transpirational water loss associated with photosynthesis. Unlike stomata of C and C species, CAM stomata open at night for the mesophyll to fix CO into malate (Mal) and store it in the vacuole. CAM plants decarboxylate Mal in the light, generating high CO concentrations within the leaf behind closed stomata for refixation by RuBisCO. CO may contribute to stomatal closure but additional mechanisms, plausibly including Mal activation of anion channels, ensure closure in the light. In the CAM species Kalanchoë fedtschenkoi, we found that guard cell anion channel activity, recorded under voltage clamp, follows KfSLAC1 and KfALMT12 transcript abundance, declining to near zero by the end of the light period. Unexpectedly, however, we found that extracellular Mal inhibited the anion current of Kalanchoë guard cells, both in wild-type and RNAi mutants with impaired Mal metabolism. We conclude that the diurnal cycle of anion channel gene transcription, rather than the physiological signal of Mal release, is a key factor in the inverted CAM stomatal cycle.

摘要

利用景天酸代谢(CAM)的植物在核酮糖-1,5-二磷酸羧化酶(RuBisCO)周围浓缩二氧化碳,同时减少与光合作用相关的蒸腾失水。与C3和C4植物的气孔不同,CAM植物的气孔在夜间开放,使叶肉细胞将二氧化碳固定为苹果酸(Mal)并储存在液泡中。CAM植物在白天使苹果酸脱羧,在关闭的气孔后在叶片内产生高浓度二氧化碳,以供RuBisCO重新固定。二氧化碳可能有助于气孔关闭,但其他机制,可能包括苹果酸对阴离子通道的激活,确保在白天关闭气孔。在CAM植物费氏落地生根中,我们发现,在电压钳记录下,保卫细胞阴离子通道活性与KfSLAC1和KfALMT12转录本丰度一致,在光照期结束时降至接近零。然而,出乎意料的是,我们发现细胞外苹果酸抑制了费氏落地生根保卫细胞的阴离子电流,无论是在野生型还是苹果酸代谢受损的RNA干扰突变体中。我们得出结论,阴离子通道基因转录的昼夜循环,而非苹果酸释放的生理信号,是CAM气孔循环倒置的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验