Suppr超能文献

PPC1 对景天酸代谢和核心生物钟及保卫细胞信号基因的调控至关重要。

PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes.

机构信息

Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom.

Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom

出版信息

Plant Cell. 2020 Apr;32(4):1136-1160. doi: 10.1105/tpc.19.00481. Epub 2020 Feb 12.

Abstract

Unlike C plants, Crassulacean acid metabolism (CAM) plants fix CO in the dark using phosphopyruvate carboxylase (PPC; EC 4.1.1.31). PPC combines phosphopyruvate with CO (as HCO ), forming oxaloacetate. The oxaloacetate is converted to malate, leading to malic acid accumulation in the vacuole, which peaks at dawn. During the light period, malate decarboxylation concentrates CO around Rubisco for secondary fixation. CAM mutants lacking PPC have not been described. Here, we employed RNA interference to silence the CAM isogene in Line lacked transcripts, PPC activity, dark period CO fixation, and nocturnal malate accumulation. Light period stomatal closure was also perturbed, and the plants displayed reduced but detectable dark period stomatal conductance and arrhythmia of the CAM CO fixation circadian rhythm under constant light and temperature free-running conditions. By contrast, the rhythm of delayed fluorescence was enhanced in plants lacking Furthermore, a subset of gene transcripts within the central circadian oscillator was upregulated and oscillated robustly in this line. The regulation of guard cell genes involved in controlling stomatal movements was also perturbed in These findings provide direct evidence that the regulatory patterns of key guard cell signaling genes are linked with the characteristic inverse pattern of stomatal opening and closing during CAM.

摘要

与 C 植物不同,景天科酸代谢(CAM)植物在黑暗中使用磷酸烯醇丙酮酸羧化酶(PPC;EC 4.1.1.31)固定 CO。PPC 将磷酸烯醇丙酮酸与 CO(作为 HCO)结合,形成草酰乙酸。草酰乙酸转化为苹果酸,导致液泡中苹果酸积累,在黎明时达到峰值。在光周期期间,苹果酸脱羧作用将 CO 浓缩在 Rubisco 周围进行二次固定。尚未描述缺乏 PPC 的 CAM 突变体。在这里,我们利用 RNA 干扰沉默 CAM 同系物 在 中,转录本、PPC 活性、黑暗期 CO 固定和夜间苹果酸积累减少。光期气孔关闭也受到干扰,并且在恒温恒光自由运行条件下,植物表现出减少但可检测到的黑暗期气孔导度和 CAM CO 固定昼夜节律的节律性。相比之下,缺乏 的植物中延迟荧光的节律增强。此外,中央生物钟振荡器内的一组基因转录本在这条线上被上调并强烈振荡。参与控制气孔运动的保卫细胞基因的调控也在 中受到干扰。这些发现提供了直接证据,表明关键保卫细胞信号基因的调控模式与 CAM 期间气孔开闭的相反模式有关。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验