Suppr超能文献

用于癌前病变和宫颈癌病变自动多类诊断的液基细胞学巴氏涂片数据集。

Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions.

作者信息

Hussain Elima, Mahanta Lipi B, Borah Himakshi, Das Chandana Ray

机构信息

Central Computational and Numerical Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India -781034.

Guwahati Medical College & Hospital, Guwahati, Assam, India -781006.

出版信息

Data Brief. 2020 Apr 22;30:105589. doi: 10.1016/j.dib.2020.105589. eCollection 2020 Jun.

Abstract

While a publicly available benchmark dataset provides a base for the development of new algorithms and comparison of results, hospital-based data collected from the real-world clinical setup is also very important in AI-based medical research for automated disease diagnosis, prediction or classifications as per standard protocol. Primary data must be constantly updated so that the developed algorithms achieve as much accuracy as possible in the regional context. This dataset would support research work related to image segmentation and final classification for a complete decision support system (https://doi.org/10.1016/j.tice.2020.101347) [1]. Liquid-based cytology (LBC) is one of the cervical screening tests. The repository consists of a total of 963 LBC images sub-divided into four sets representing the four classes: NILM, LSIL, HSIL, and SCC. It comprises pre-cancerous and cancerous lesions related to cervical cancer as per standards under The Bethesda System (TBS). The images were captured in 40x magnification using Leica ICC50 HD microscope collected with due consent from 460 patients visiting the O&G department of the public hospital with various gynaecological problems. The images were then viewed and categorized by experts of the pathology department.

摘要

虽然公开可用的基准数据集为新算法的开发和结果比较提供了基础,但从实际临床环境中收集的基于医院的数据在基于人工智能的医学研究中对于按照标准协议进行自动疾病诊断、预测或分类也非常重要。原始数据必须不断更新,以便所开发的算法在区域范围内尽可能达到高准确率。该数据集将支持与图像分割和最终分类相关的研究工作,以构建一个完整的决策支持系统(https://doi.org/10.1016/j.tice.2020.101347) [1]。液基细胞学检查(LBC)是宫颈癌筛查测试之一。该数据库总共包含963张LBC图像,分为四组,分别代表四个类别:未见上皮内病变或恶性病变(NILM)、低度鳞状上皮内病变(LSIL)、高度鳞状上皮内病变(HSIL)和鳞状细胞癌(SCC)。它包含根据贝塞斯达系统(TBS)标准与宫颈癌相关的癌前病变和癌性病变。这些图像是使用徕卡ICC50 HD显微镜以40倍放大率拍摄的,拍摄对象是460名因各种妇科问题前往公立医院妇产科就诊的患者,并已获得他们的适当同意。然后,病理科专家对这些图像进行查看和分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dcb/7186519/87d533d59f62/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验