Suppr超能文献

基于自适应特征提取的宫颈病变细胞/细胞团检测

Detection of Cervical Lesion Cell/Clumps Based on Adaptive Feature Extraction.

作者信息

Li Gang, Li Xingguang, Wang Yuting, Gong Shu, Yang Yanting, Xu Chuanyun

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, China.

Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.

出版信息

Bioengineering (Basel). 2024 Jul 5;11(7):686. doi: 10.3390/bioengineering11070686.

Abstract

Automated detection of cervical lesion cell/clumps in cervical cytological images is essential for computer-aided diagnosis. In this task, the shape and size of the lesion cell/clumps appeared to vary considerably, reducing the detection performance of cervical lesion cell/clumps. To address the issue, we propose an adaptive feature extraction network for cervical lesion cell/clumps detection, called AFE-Net. Specifically, we propose the adaptive module to acquire the features of cervical lesion cell/clumps, while introducing the global bias mechanism to acquire the global average information, aiming at combining the adaptive features with the global information to improve the representation of the target features in the model, and thus enhance the detection performance of the model. Furthermore, we analyze the results of the popular bounding box loss on the model and propose the new bounding box loss tendency-IoU (TIoU). Finally, the network achieves the mean Average Precision (mAP) of 64.8% on the CDetector dataset, with 30.7 million parameters. Compared with YOLOv7 of 62.6% and 34.8M, the model improved mAP by 2.2% and reduced the number of parameters by 11.8%.

摘要

在宫颈细胞学图像中自动检测宫颈病变细胞/细胞团对于计算机辅助诊断至关重要。在这项任务中,病变细胞/细胞团的形状和大小差异很大,这降低了宫颈病变细胞/细胞团的检测性能。为了解决这个问题,我们提出了一种用于宫颈病变细胞/细胞团检测的自适应特征提取网络,称为AFE-Net。具体来说,我们提出了自适应模块来获取宫颈病变细胞/细胞团的特征,同时引入全局偏差机制来获取全局平均信息,旨在将自适应特征与全局信息相结合,以改善模型中目标特征的表示,从而提高模型的检测性能。此外,我们分析了模型上流行的边界框损失结果,并提出了新的边界框损失趋势交并比(TIoU)。最后,该网络在CDetector数据集上实现了64.8%的平均精度均值(mAP),有3070万个参数。与YOLOv7的62.6%和3480万个参数相比,该模型将mAP提高了2.2%,并将参数数量减少了11.8%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2852/11274185/ae0a9112e8a3/bioengineering-11-00686-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验