Gröner Lukas, Mengis Lukas, Galetz Mathias, Kirste Lutz, Daum Philipp, Wirth Marco, Meyer Frank, Fromm Alexander, Blug Bernhard, Burmeister Frank
Department of Tribology, Fraunhofer-Institut für Werkstoffmechanik IWM, Woehlerstrasse 11, 79108 Freiburg, Germany.
Department of High Temperature Materials, DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.
Materials (Basel). 2020 May 1;13(9):2085. doi: 10.3390/ma13092085.
Aluminum containing MAX (MAX) phase materials have attracted increasing attention due to their corrosion resistance, a pronounced self-healing effect and promising diffusion barrier properties for hydrogen. We synthesized TiAlN coatings on ferritic steel substrates by physical vapor deposition of alternating Ti- and AlN-layers followed by thermal annealing. The microstructure developed a {0001}-texture with platelet-like shaped grains. To investigate the oxidation behavior, the samples were exposed to a temperature of 700 °C in a muffle furnace. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) depth profiles revealed the formation of oxide scales, which consisted mainly of dense and stable α-AlO. The oxide layer thickness increased with a time dependency of ~t. Electron probe micro analysis (EPMA) scans revealed a diffusion of Al from the coating into the substrate. Steel membranes with as-deposited TiAlN and partially oxidized TiAlN coatings were used for permeation tests. The permeation of deuterium from the gas phase was measured in an ultra-high vacuum (UHV) permeation cell by mass spectrometry at temperatures of 30-400 °C. We obtained a permeation reduction factor (PRF) of 45 for a pure TiAlN coating and a PRF of ~3700 for the oxidized sample. Thus, protective coatings, which prevent hydrogen-induced corrosion, can be achieved by the proper design of TiAlN coatings with suitable oxide scale thicknesses.
含铝的MAX相材料因其耐腐蚀性、显著的自愈合效应以及对氢具有良好的扩散阻挡性能而受到越来越多的关注。我们通过交替物理气相沉积Ti层和AlN层,然后进行热退火,在铁素体钢基底上合成了TiAlN涂层。其微观结构形成了具有片状晶粒的{0001}织构。为了研究氧化行为,将样品在马弗炉中加热到700°C。拉曼光谱和X射线光电子能谱(XPS)深度剖析揭示了氧化膜的形成,其主要由致密且稳定的α - Al₂O₃组成。氧化层厚度随时间呈~t的关系增加。电子探针微分析(EPMA)扫描显示Al从涂层扩散到基底中。使用沉积态TiAlN涂层和部分氧化的TiAlN涂层的钢膜进行渗透测试。在超高温真空(UHV)渗透池中,通过质谱法在30 - 400°C的温度下测量氘从气相的渗透。我们得到纯TiAlN涂层的渗透降低因子(PRF)为45,氧化样品的PRF约为3700。因此,通过合理设计具有合适氧化膜厚度的TiAlN涂层,可以实现防止氢致腐蚀的保护涂层。