Suppr超能文献

用于管状高温质子交换膜燃料电池的多孔金属基3D打印阳极气体扩散层的研究

Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells.

作者信息

Bermúdez Agudelo María Catalina, Hampe Manfred, Reiber Thorsten, Abele Eberhard

机构信息

Thermal Process Engineering Group (TVT), Institute for Nano- and Microfluidics (NMF), Technical University of Darmstadt, Otto-Berndt-Straße 2, D-64287 Darmstadt, Germany.

Institute of Production Management, Technology and Machine Tools (PTW), Technical University of Darmstadt, Otto-Berndt-Straße 2, D-64287 Darmstadt, Germany.

出版信息

Materials (Basel). 2020 May 1;13(9):2096. doi: 10.3390/ma13092096.

Abstract

A high-temperature proton exchange membrane fuel cell (HT-PEMFC) conventionally uses a planar design with carbon-based substrates as the gas diffusion layer (GDL) materials. However, the metal-based substrates allow for alternative designs. In this study, the applicability of porous thin-walled tubular elements made of 316L stainless steel as the anode GDL in a multi-layer tubular HT-PEMFC was investigated. The anode GDLs were fabricated via powder bed fusion using a laser beam (PBF-LB) process with defined porosities (14% and 16%). The morphology of the porous elements was compared using scanning electron microscopy (SEM) micrographs. The influence of the porosity on the fuel cell performance was evaluated through electrochemical characterization and a short-term stability test (45 h) in a commercial test station operated at 160 °C and ambient pressure, using hydrogen as the fuel and air as the oxidant. The results showed that the fuel cell manufactured upon the anode GDL with a porosity of 16% had a higher performance with a peak power density of 329.25 W/m after 5 h of operation at 125.52 A/m and a voltage degradation rate of 0.511 mV/h over the stability test period. Moreover, this work indicates that additive manufacturing could be a useful tool for further fuel cell development.

摘要

高温质子交换膜燃料电池(HT - PEMFC)传统上采用平面设计,以碳基材料作为气体扩散层(GDL)。然而,金属基材料可实现其他设计。本研究考察了由316L不锈钢制成的多孔薄壁管状元件作为多层管状HT - PEMFC阳极GDL的适用性。阳极GDL通过激光粉末床熔融(PBF - LB)工艺制造,孔隙率分别为14%和16%。利用扫描电子显微镜(SEM)图像比较了多孔元件的形态。通过电化学表征以及在160°C和常压下运行的商业测试站中进行的短期稳定性测试(45小时),以氢气为燃料、空气为氧化剂,评估了孔隙率对燃料电池性能的影响。结果表明,基于孔隙率为16%的阳极GDL制造的燃料电池性能更高,在125.52 A/m的电流密度下运行5小时后,峰值功率密度为329.25 W/m²,在稳定性测试期间电压降解率为0.511 mV/h。此外,这项工作表明增材制造可能是进一步发展燃料电池的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab84/7254196/edc6a9f88dfe/materials-13-02096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验