Suppr超能文献

利用热开关系统重新平衡微生物碳分布,以最大化 L-苏氨酸产量。

Rebalancing microbial carbon distribution for L-threonine maximization using a thermal switch system.

机构信息

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.

出版信息

Metab Eng. 2020 Sep;61:33-46. doi: 10.1016/j.ymben.2020.01.009. Epub 2020 May 1.

Abstract

In metabolic engineering, unbalanced microbial carbon distribution has long blocked the further improvement in yield and productivity of high-volume natural metabolites. Current studies mostly focus on regulating desired biosynthetic pathways, whereas few strategies are available to maximize L-threonine efficiently. Here, we present a strategy to guarantee the supply of reduced cofactors and actualize L-threonine maximization by regulating cellular carbon distribution in central metabolic pathways. A thermal switch system was designed and applied to divide the whole fermentation process into two stages: growth and production. This system could rebalance carbon substrates between pyruvate and oxaloacetate by controlling the heterogenous expression of pyruvate carboxylase and oxaloacetate decarboxylation that responds to temperature. The system was tested in an L-threonine producer Escherichia coli TWF001, and the resulting strain TWF106/pFT24rp overproduced L-threonine from glucose with 111.78% molar yield. The thermal switch system was then employed to switch off the L-alanine synthesis pathway, resulting in the highest L-threonine yield of 124.03%, which exceeds the best reported yield (87.88%) and the maximum available theoretical value of L-threonine production (122.47%). This inducer-free genetic circuit design can be also developed for other biosynthetic pathways to increase product conversion rates and shorten production cycles.

摘要

在代谢工程中,微生物碳分布不平衡长期以来一直阻碍了高产量天然代谢物产量和生产力的进一步提高。目前的研究主要集中在调节所需的生物合成途径上,而很少有策略可以有效地最大化 L-苏氨酸的产量。在这里,我们提出了一种通过调节中心代谢途径中的细胞碳分布来保证还原辅助因子供应并实现 L-苏氨酸最大化的策略。设计并应用了一个热开关系统将整个发酵过程分为两个阶段:生长和生产。该系统通过控制响应温度的异源表达的丙酮酸羧化酶和草酰乙酸脱羧酶,在丙酮酸和草酰乙酸之间重新分配碳底物。该系统在 L-苏氨酸生产菌 Escherichia coli TWF001 中进行了测试,结果表明,所得菌株 TWF106/pFT24rp 从葡萄糖生产 L-苏氨酸的摩尔产率为 111.78%。然后,该热开关系统被用来关闭 L-丙氨酸合成途径,从而得到最高的 L-苏氨酸产率为 124.03%,超过了最佳报道的产率(87.88%)和 L-苏氨酸生产的最大理论值(122.47%)。这种无诱导剂的遗传电路设计也可以用于其他生物合成途径,以提高产物转化率和缩短生产周期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验