Gan Qi, Zhang Jianli, Gong Xinyu, Zou Yusong, Yan Yajun
School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia Athens GA 30602 USA
Green Chem. 2025 Jul 30. doi: 10.1039/d5gc03618f.
Lignocellulosic biomass holds great potential to produce a wide range of chemicals, including biofuels, biomaterials, and bioactive compounds. Effective utilization of these biomass feedstocks can significantly benefit human well-being while helping to mitigate climate change and reduce the environmental damage associated with fossil fuel use. Microbial synthesis plays a key role in converting biomass into valuable products. However, further optimization of these metabolic pathways is required to improve productivity. The design and optimization of these pathways remain major bottlenecks due to the complexity of biological systems and our limited understanding of them. Biosensors hold significant potential in advancing microbial metabolic engineering and enhancing substrate-to-product bioconversion. In this review, we discuss the major microbial conversion pathways for lignocellulosic biomass, the development and optimization of biosensors, and their applications in efficient biocatalytic processes for lignocellulosic conversion.
木质纤维素生物质具有生产多种化学品的巨大潜力,包括生物燃料、生物材料和生物活性化合物。有效利用这些生物质原料可显著造福人类福祉,同时有助于缓解气候变化并减少与化石燃料使用相关的环境破坏。微生物合成在将生物质转化为有价值的产品中起着关键作用。然而,需要进一步优化这些代谢途径以提高生产力。由于生物系统的复杂性以及我们对它们的了解有限,这些途径的设计和优化仍然是主要瓶颈。生物传感器在推进微生物代谢工程和提高底物到产物的生物转化方面具有巨大潜力。在这篇综述中,我们讨论了木质纤维素生物质的主要微生物转化途径、生物传感器的开发和优化及其在木质纤维素转化的高效生物催化过程中的应用。