Hofmeister Andreas, Thomaßen Maximilian C, Markert Sabrina, Marquardt André, Preußner Mathieu, Rußwurm Martin, Schermuly Ralph T, Steinhoff Ulrich, Gröne Hermann-Josef, Hoyer Joachim, Humphreys Benjamin D, Grgic Ivica
Department of Internal Medicine and Nephrology, University Hospital Giessen and Marburg, Philipps-University, Marburg, Germany.
Institute of Pathology, Julius-Maximilians-University Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany.
Sci Rep. 2020 May 5;10(1):7519. doi: 10.1038/s41598-020-63514-6.
Tissue macrophages play an important role in organ homeostasis, immunity and the pathogenesis of various inflammation-driven diseases. One major challenge has been to selectively study resident macrophages in highly heterogeneous organs such as kidney. To address this problem, we adopted a Translational Ribosome Affinity Purification (TRAP)- approach and designed a transgene that expresses an eGFP-tagged ribosomal protein (L10a) under the control of the macrophage-specific c-fms promoter to generate c-fms-eGFP-L10a transgenic mice (Mac). Rigorous characterization found no gross abnormalities in Mac mice and confirmed transgene expression across various organs. Immunohistological analyses of Mac kidneys identified eGFP-L10a expressing cells in the tubulointerstitial compartment which stained positive for macrophage marker F4/80. Inflammatory challenge led to robust eGFP-L10a upregulation in kidney, confirming Mac responsiveness in vivo. We successfully extracted macrophage-specific polysomal RNA from Mac kidneys and conducted RNA sequencing followed by bioinformatical analyses, hereby establishing a comprehensive and unique in vivo gene expression and pathway signature of resident renal macrophages. In summary, we created, validated and applied a new, responsive macrophage-specific TRAP mouse line, defining the translational profile of renal macrophages and dendritic cells. This new tool may be of great value for the study of macrophage biology in different organs and various models of injury and disease.
组织巨噬细胞在器官稳态、免疫以及各种炎症驱动性疾病的发病机制中发挥着重要作用。一个主要挑战是在诸如肾脏等高度异质性的器官中选择性地研究驻留巨噬细胞。为了解决这个问题,我们采用了翻译核糖体亲和纯化(TRAP)方法,并设计了一种转基因,该转基因在巨噬细胞特异性c-fms启动子的控制下表达带有eGFP标签的核糖体蛋白(L10a),以生成c-fms-eGFP-L10a转基因小鼠(Mac)。严格的表征发现Mac小鼠没有明显异常,并证实了转基因在各个器官中的表达。对Mac小鼠肾脏进行免疫组织学分析,在肾小管间质区室中鉴定出表达eGFP-L10a的细胞,这些细胞对巨噬细胞标志物F4/80呈阳性染色。炎症刺激导致肾脏中eGFP-L10a显著上调,证实了Mac小鼠在体内的反应性。我们成功地从Mac小鼠肾脏中提取了巨噬细胞特异性多聚体RNA,并进行了RNA测序,随后进行生物信息学分析,从而建立了驻留肾巨噬细胞全面且独特的体内基因表达和通路特征。总之,我们创建、验证并应用了一种新的、有反应性的巨噬细胞特异性TRAP小鼠品系,确定了肾巨噬细胞和树突状细胞的翻译图谱。这个新工具对于研究不同器官以及各种损伤和疾病模型中的巨噬细胞生物学可能具有重要价值。