Suppr超能文献

深度学习混合方法自动诊断牙周骨丢失和牙周炎阶段。

Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis.

机构信息

Department of Oral and Maxillofacial Radiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.

Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.

出版信息

Sci Rep. 2020 May 5;10(1):7531. doi: 10.1038/s41598-020-64509-z.

Abstract

We developed an automatic method for staging periodontitis on dental panoramic radiographs using the deep learning hybrid method. A novel hybrid framework was proposed to automatically detect and classify the periodontal bone loss of each individual tooth. The framework is a hybrid of deep learning architecture for detection and conventional CAD processing for classification. Deep learning was used to detect the radiographic bone level (or the CEJ level) as a simple structure for the whole jaw on panoramic radiographs. Next, the percentage rate analysis of the radiographic bone loss combined the tooth long-axis with the periodontal bone and CEJ levels. Using the percentage rate, we could automatically classify the periodontal bone loss. This classification was used for periodontitis staging according to the new criteria proposed at the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. The Pearson correlation coefficient of the automatic method with the diagnoses by radiologists was 0.73 overall for the whole jaw (p < 0.01), and the intraclass correlation value 0.91 overall for the whole jaw (p < 0.01). The novel hybrid framework that combined deep learning architecture and the conventional CAD approach demonstrated high accuracy and excellent reliability in the automatic diagnosis of periodontal bone loss and staging of periodontitis.

摘要

我们使用深度学习混合方法开发了一种用于在牙科全景放射片中分期牙周炎的自动方法。提出了一种新颖的混合框架,用于自动检测和分类每个牙齿的牙周骨丢失。该框架是用于检测的深度学习架构与用于分类的传统 CAD 处理的混合。深度学习用于检测放射线照相的骨水平(或 CEJ 水平)作为全景放射片中整个颌骨的简单结构。接下来,将放射线照相骨丢失的百分比分析与牙齿长轴、牙周骨和 CEJ 水平相结合。使用百分比,可以自动对牙周骨丢失进行分类。根据 2017 年牙周病和种植体周围疾病及状况分类世界研讨会提出的新标准,对牙周炎进行分期。自动方法与放射科医生诊断的总体 Pearson 相关系数为 0.73(p<0.01),整个颌骨的组内相关系数为 0.91(p<0.01)。该新颖的混合框架结合了深度学习架构和传统 CAD 方法,在牙周骨丢失的自动诊断和牙周炎的分期中表现出了很高的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df66/7200807/c2e81ead03a6/41598_2020_64509_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验