Suppr超能文献

基于全景片评估下颌第一磨牙牙根形态的深度学习人工智能系统。

A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography.

机构信息

1 Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry , Nagoya , Japan.

2 Department of Endodontics, Aichi-Gakuin University School of Dentistry , Nagoya , Japan.

出版信息

Dentomaxillofac Radiol. 2019 Mar;48(3):20180218. doi: 10.1259/dmfr.20180218. Epub 2018 Nov 9.

Abstract

OBJECTIVES

: The distal root of the mandibular first molar occasionally has an extra root, which can directly affect the outcome of endodontic therapy. In this study, we examined the diagnostic performance of a deep learning system for classification of the root morphology of mandibular first molars on panoramic radiographs. Dental cone-beam CT (CBCT) was used as the gold standard.

METHODS

: CBCT images and panoramic radiographs of 760 mandibular first molars from 400 patients who had not undergone root canal treatments were analyzed. Distal roots were examined on CBCT images to determine the presence of a single or extra root. Image patches of the roots were segmented from panoramic radiographs and applied to a deep learning system, and its diagnostic performance in the classification of root morphplogy was examined.

RESULTS

: Extra roots were observed in 21.4% of distal roots on CBCT images. The deep learning system had diagnostic accuracy of 86.9% for the determination of whether distal roots were single or had extra roots.

CONCLUSIONS

: The deep learning system showed high accuracy in the differential diagnosis of a single or extra root in the distal roots of mandibular first molars.

摘要

目的

下颌第一磨牙的远中根偶尔会有额外的根,这可能直接影响根管治疗的效果。本研究旨在评估深度学习系统在基于曲面体层片(panoramic radiographs)对下颌第一磨牙远中根形态分类中的诊断性能,以锥形束 CT(cone-beam CT,CBCT)为金标准。

方法

对 400 名未经根管治疗的患者的 760 个下颌第一磨牙的 CBCT 图像和全景片进行分析。在 CBCT 图像上检查远中根是否存在单根或额外根。从全景片上提取根的图像块,并应用于深度学习系统,以检查其在分类根形态方面的诊断性能。

结果

在 CBCT 图像上,21.4%的远中根存在额外根。深度学习系统对确定远中根是否为单根或有额外根的诊断准确率为 86.9%。

结论

深度学习系统在鉴别下颌第一磨牙远中根的单根或额外根方面具有较高的准确性。

相似文献

1
A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography.
Dentomaxillofac Radiol. 2019 Mar;48(3):20180218. doi: 10.1259/dmfr.20180218. Epub 2018 Nov 9.
6
Cone beam CT evaluation of mandibular molar root canal morphology in a Turkish Cypriot population.
Clin Oral Investig. 2016 Nov;20(8):2221-2226. doi: 10.1007/s00784-016-1742-2. Epub 2016 Feb 6.
7
Predicting the configuration of a C-shaped canal system from panoramic radiographs.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010 Jan;109(1):e37-41. doi: 10.1016/j.tripleo.2009.08.024.
10
Diagnostic accuracy of panoramic radiography, stereo-scanography and cone beam CT for assessment of mandibular third molars before surgery.
Acta Odontol Scand. 2013 Nov;71(6):1391-8. doi: 10.3109/00016357.2013.764574. Epub 2013 Jan 29.

引用本文的文献

2
Automated quality evaluation of dental panoramic radiographs using deep learning.
Imaging Sci Dent. 2025 Jun;55(2):175-188. doi: 10.5624/isd.20240232. Epub 2025 Apr 10.
3
Deep learning for automated dental plaque index assessment: validation against expert evaluations.
BMC Oral Health. 2025 Jul 2;25(1):1000. doi: 10.1186/s12903-025-06350-2.
4
Artificial Intelligence Tools in Dentistry: A Systematic Review on Their Application and Outcomes.
Cureus. 2025 May 29;17(5):e85062. doi: 10.7759/cureus.85062. eCollection 2025 May.
5
A Three-Stage Fusion Neural Network for Predicting the Risk of Root Fracture-A Pilot Study.
Bioengineering (Basel). 2025 Apr 24;12(5):447. doi: 10.3390/bioengineering12050447.
6
Detection of maxillary sinus pathologies using deep learning algorithms.
Eur Arch Otorhinolaryngol. 2025 May 20. doi: 10.1007/s00405-025-09451-4.
9
Accuracy of Artificial Intelligence Models in Detecting Peri-Implant Bone Loss: A Systematic Review.
Diagnostics (Basel). 2025 Mar 7;15(6):655. doi: 10.3390/diagnostics15060655.
10
Deep learning algorithms for detecting fractured instruments in root canals.
BMC Oral Health. 2025 Feb 23;25(1):293. doi: 10.1186/s12903-025-05652-9.

本文引用的文献

1
Classification of Computed Tomography Images in Different Slice Positions Using Deep Learning.
J Healthc Eng. 2018 Jul 16;2018:1753480. doi: 10.1155/2018/1753480. eCollection 2018.
2
Automated Detection of Diabetic Retinopathy using Deep Learning.
AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:147-155. eCollection 2018.
4
Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey.
Contrast Media Mol Imaging. 2017 Oct 15;2017:9512370. doi: 10.1155/2017/9512370. eCollection 2017.
6
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images.
J Healthc Eng. 2017;2017:8314740. doi: 10.1155/2017/8314740. Epub 2017 Aug 9.
7
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Med Image Anal. 2018 Jan;43:98-111. doi: 10.1016/j.media.2017.10.002. Epub 2017 Oct 5.
9
Absorbed doses for patients undergoing panoramic radiography, cephalometric radiography and CBCT.
Int J Occup Med Environ Health. 2017 Jul 17;30(5):705-713. doi: 10.13075/ijomeh.1896.00960. Epub 2017 May 12.
10
A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis.
PLoS One. 2017 Jun 2;12(6):e0178992. doi: 10.1371/journal.pone.0178992. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验