Suppr超能文献

概念空间中建模的事件与因果映射

Events and Causal Mappings Modeled in Conceptual Spaces.

作者信息

Gärdenfors Peter

机构信息

Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden.

Palaeo-Research Institute, Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa.

出版信息

Front Psychol. 2020 Apr 7;11:630. doi: 10.3389/fpsyg.2020.00630. eCollection 2020.

Abstract

The aim of the article is to present a model of causal relations that is based on what is known about human causal reasoning and that forms guidelines for implementations in robots. I argue for two theses concerning human cognition. The first is that human causal cognition, in contrast to that of other animals, is based on the understanding of the that are involved. The second thesis is that humans think about causality in terms of . I present a two-vector model of events, developed by Gärdenfors and Warglien, which states that an event is represented in terms of two main components - the force of an that drives the event, and the of its application. Apart from the causal mapping, the event model contains representations of a patient, an agent, and possibly some other roles. Agents and patients are objects (animate or inanimate) that have different properties. Following my theory of conceptual spaces, they can be described as vectors of property values. At least two spaces are needed to describe an event, an action space and a result space. The result of an event is modeled as a vector representing the change of properties of the patient before and after the event. In robotics the focus has been on describing results. The proposed model also includes the causal part of events, typically described as an action. A central part of an event category is the mapping from actions to results. This mapping contains the central information about relations. In applications of the two-vector model, the central problem is how the event mapping can be learned in a way that is amenable to implementations in robots. Three processes are central for event cognition: causal thinking, control of action and learning by generalization. Although it is not yet clear which is the best way to model how the mappings can be learned, they should be constrained by three corresponding mathematical properties: monotonicity (related to qualitative causal thinking); continuity (plays a key role in activities of action control); and convexity (facilitates generalization and the categorization of events). I argue that Bayesian models are not suitable for these purposes, but some more geometrically oriented approach to event mappings should be used.

摘要

本文的目的是提出一种因果关系模型,该模型基于对人类因果推理的已知认识,并为机器人的实现提供指导方针。我提出了两个关于人类认知的论点。第一个论点是,与其他动物相比,人类的因果认知是基于对所涉及的机制的理解。第二个论点是,人类从机制的角度思考因果关系。我提出了一个由加登福斯和瓦尔格连开发的事件双向量模型,该模型指出,一个事件由两个主要成分表示——驱动该事件的力量以及该力量的应用方向。除了因果映射外,事件模型还包含一个受动者、一个施动者以及可能的其他一些角色的表示。施动者和受动者是具有不同属性的对象(有生命的或无生命的)。根据我的概念空间理论,它们可以被描述为属性值的向量。描述一个事件至少需要两个空间,一个动作空间和一个结果空间。一个事件的结果被建模为一个向量,代表事件前后受动者属性的变化。在机器人技术中,重点一直是描述结果。所提出的模型还包括事件的因果部分,通常被描述为一个动作。一个事件类别的核心部分是从动作到结果的映射。这个映射包含了关于因果关系的核心信息。在双向量模型的应用中,核心问题是如何以一种适合在机器人中实现的方式学习事件映射。事件认知有三个核心过程:因果思维、动作控制和通过泛化学习。虽然目前尚不清楚哪种是模拟映射学习方式的最佳方法,但它们应该受到三个相应数学属性的约束:单调性(与定性因果思维相关);连续性(在动作控制活动中起关键作用);以及凸性(便于泛化和事件分类)。我认为贝叶斯模型不适合这些目的,而应该使用一些更具几何导向性的事件映射方法。

相似文献

1
Events and Causal Mappings Modeled in Conceptual Spaces.概念空间中建模的事件与因果映射
Front Psychol. 2020 Apr 7;11:630. doi: 10.3389/fpsyg.2020.00630. eCollection 2020.
2
From Actions to Effects: Three Constraints on Event Mappings.从行动到效果:事件映射的三个约束条件。
Front Psychol. 2018 Aug 14;9:1391. doi: 10.3389/fpsyg.2018.01391. eCollection 2018.
6
Spaces in the Brain: From Neurons to Meanings.大脑中的空间:从神经元到意义
Front Psychol. 2016 Nov 22;7:1820. doi: 10.3389/fpsyg.2016.01820. eCollection 2016.
9
Privileged (Default) Causal Cognition: A Mathematical Analysis.特权(默认)因果认知:数学分析
Front Psychol. 2018 Apr 10;9:498. doi: 10.3389/fpsyg.2018.00498. eCollection 2018.

引用本文的文献

1
The Geometry and Dynamics of Meaning.意义的几何学与动力学
Top Cogn Sci. 2025 Jan;17(1):34-56. doi: 10.1111/tops.12767. Epub 2024 Nov 10.
3
Towards a unifying theory of linguistic meaning.迈向语言意义的统一理论。
Commun Integr Biol. 2023 Apr 26;16(1):2200666. doi: 10.1080/19420889.2023.2200666. eCollection 2023.
4
Primary Cognitive Categories Are Determined by Their Invariances.主要认知范畴由其不变性决定。
Front Psychol. 2020 Dec 8;11:584017. doi: 10.3389/fpsyg.2020.584017. eCollection 2020.

本文引用的文献

1
Any way the wind blows: Children's inferences about force and motion events.无论风吹何处:儿童对力和运动事件的推断。
J Exp Child Psychol. 2019 Jan;177:119-131. doi: 10.1016/j.jecp.2018.08.002. Epub 2018 Sep 3.
2
From Actions to Effects: Three Constraints on Event Mappings.从行动到效果:事件映射的三个约束条件。
Front Psychol. 2018 Aug 14;9:1391. doi: 10.3389/fpsyg.2018.01391. eCollection 2018.
3
Causal Cognition, Force Dynamics and Early Hunting Technologies.因果认知、力的动态关系与早期狩猎技术
Front Psychol. 2018 Feb 12;9:87. doi: 10.3389/fpsyg.2018.00087. eCollection 2018.
4
MEG Insight into the Spectral Dynamics Underlying Steady Isometric Muscle Contraction.脑磁图洞察等长肌肉稳定收缩下的频谱动力学
J Neurosci. 2017 Oct 25;37(43):10421-10437. doi: 10.1523/JNEUROSCI.0447-17.2017. Epub 2017 Sep 26.
5
Tracking the evolution of causal cognition in humans.追踪人类因果认知的演变。
J Anthropol Sci. 2017 Dec 30;95:219-234. doi: 10.4436/JASS.95006. Epub 2017 May 8.
8
Forces and motion: how young children understand causal events.力与运动:儿童如何理解因果事件。
Child Dev. 2013 Jul-Aug;84(4):1285-95. doi: 10.1111/cdev.12035. Epub 2013 Jan 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验