Centre for International Health, University of Otago, Dunedin, New Zealand.
Department of Medicine, University of Otago, Christchurch, New Zealand.
Zoonoses Public Health. 2020 Aug;67(5):496-505. doi: 10.1111/zph.12712. Epub 2020 May 6.
Many infectious diseases lack robust estimates of incidence from endemic areas, and extrapolating incidence when there are few locations with data remains a major challenge in burden of disease estimation. We sought to combine sentinel surveillance with community behavioural surveillance to estimate leptospirosis incidence. We administered a questionnaire gathering responses on established locally relevant leptospirosis risk factors and recent fever to livestock-owning community members across six districts in northern Tanzania and applied a logistic regression model predicting leptospirosis risk on the basis of behavioural factors that had been previously developed among patients with fever in Moshi Municipal and Moshi Rural Districts. We aggregated probability of leptospirosis by district and estimated incidence in each district by standardizing probabilities to those previously estimated for Moshi Districts. We recruited 286 community participants: Hai District (n = 11), Longido District (59), Monduli District (56), Moshi Municipal District (103), Moshi Rural District (44) and Rombo District (13). The mean predicted probability of leptospirosis by district was Hai 0.029 (0.005, 0.095), Longido 0.071 (0.009, 0.235), Monduli 0.055 (0.009, 0.206), Moshi Rural 0.014 (0.002, 0.049), Moshi Municipal 0.015 (0.004, 0.048) and Rombo 0.031 (0.006, 0.121). We estimated the annual incidence (upper and lower bounds of estimate) per 100,000 people of human leptospirosis among livestock owners by district as Hai 35 (6, 114), Longido 85 (11, 282), Monduli 66 (11, 247), Moshi Rural 17 (2, 59), Moshi Municipal 18 (5, 58) and Rombo 47 (7, 145). Use of community behavioural surveillance may be a useful tool for extrapolating disease incidence beyond sentinel surveillance sites.
许多传染病在地方性流行地区缺乏对发病率的可靠估计,而在数据较少的情况下推断发病率仍然是疾病负担估计的一个主要挑战。我们试图结合哨点监测和社区行为监测来估计钩端螺旋体病的发病率。我们向六个坦桑尼亚北部地区的牲畜饲养社区成员发放了一份调查问卷,收集了有关当地相关钩端螺旋体病风险因素和近期发热的信息,并应用逻辑回归模型预测了基于先前在莫希市和莫希农村地区发热患者中开发的行为因素的钩端螺旋体病风险。我们按地区汇总钩端螺旋体病的发病概率,并通过将概率标准化为莫希地区先前估计的概率来估计每个地区的发病率。我们招募了 286 名社区参与者:Hai 区(n=11)、Longido 区(59)、Monduli 区(56)、Moshi 市(103)、Moshi 农村区(44)和 Rombo 区(13)。按地区划分,平均预测钩端螺旋体病的概率为 Hai 区 0.029(0.005,0.095)、Longido 区 0.071(0.009,0.235)、Monduli 区 0.055(0.009,0.206)、Moshi 农村区 0.014(0.002,0.049)、Moshi 市 0.015(0.004,0.048)和 Rombo 区 0.031(0.006,0.121)。我们估计了每个区牲畜饲养者中人类钩端螺旋体病的年发病率(估计值的上限和下限),每 10 万人为 Hai 区 35(6,114)、Longido 区 85(11,282)、Monduli 区 66(11,247)、Moshi 农村区 17(2,59)、Moshi 市 18(5,58)和 Rombo 区 47(7,145)。使用社区行为监测可能是一种有用的工具,可以在哨点监测点之外推断疾病发病率。