Wang Guanyao, Zhang Ying, Guo Bingkun, Tang Liang, Xu Gang, Zhang Yuanjun, Wu Minghong, Liu Hua-Kun, Dou Shi-Xue, Wu Chao
Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia.
Nano Lett. 2020 Jun 10;20(6):4464-4471. doi: 10.1021/acs.nanolett.0c01257. Epub 2020 May 7.
Sodium metal anode (SMA) is one of the most favored choices for the next-generation rechargeable battery technologies owing to its low cost and natural abundance. However, the poor reversibility resulted from dendrite growth and formation of unstable solid electrolyte interphase has significantly hindered the practical application of SMAs. Herein, we report that a nucleation buffer layer comprising elaborately designed core-shell C@Sb nanoparticles (NPs) enables the homogeneous electrochemical deposition of sodium metal for long-term cycling. These C@Sb NPs can increase active sites for initial sodium nucleation through Sb-Na alloy cores and keep these cores stable through carbon shells. The assembled cells with this nucleation layer can deliver continuously repeated sodium plating/stripping cycles for nearly 6000 h at a high areal capacity of 4 mA h cm with an average Coulombic efficiency 99.7%. This ingenious structure design of alloy-based nucleation agent opens up a promising avenue to stabilize sodium metal with targeted properties.
钠金属阳极(SMA)因其低成本和天然丰富性,是下一代可充电电池技术最受青睐的选择之一。然而,枝晶生长和不稳定固体电解质界面的形成导致的较差可逆性,严重阻碍了SMA的实际应用。在此,我们报道一种由精心设计的核壳结构C@Sb纳米颗粒(NPs)组成的成核缓冲层,能够实现钠金属的均匀电化学沉积以进行长期循环。这些C@Sb NPs可以通过Sb-Na合金核增加初始钠成核的活性位点,并通过碳壳保持这些核的稳定性。具有这种成核层的组装电池能够在4 mA h cm的高面积容量下连续重复进行钠电镀/脱镀循环近6000小时,平均库仑效率为99.7%。这种基于合金的成核剂的巧妙结构设计为稳定具有目标性能的钠金属开辟了一条有前景的途径。