Zhuang Rong, Zhang Xiuhai, Qu Changzhen, Xu Xiaosa, Yang Jiaying, Ye Qian, Liu Zhe, Kaskel Stefan, Xu Fei, Wang Hongqiang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China.
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China.
Sci Adv. 2023 Sep 29;9(39):eadh8060. doi: 10.1126/sciadv.adh8060.
Sodium metal batteries hold great promise for energy-dense and low-cost energy storage technology but are severely impeded by catastrophic dendrite issue. State-of-the-art strategies including sodiophilic seeding/hosting interphase design manifest great success on dendrite suppression, while neglecting unavoidable interphase-depleted Na before plating, which poses excessive Na use, sacrificed output voltage and ultimately reduced energy density. We here demonstrate that elaborate-designed fluorinated porous framework could simultaneously realize superior sodiophilicity yet negligible interphase-consumed Na for dendrite-free and durable Na batteries. As elucidated by physicochemical and theoretical characterizations, well-defined fluorinated edges on porous channels are responsible for both high affinities ensuring uniform deposition and low reactivity rendering superior Na utilization for plating. Accordingly, synergistic performance enhancement is achieved with stable 400 cycles and superior plateau to sloping capacity ratio in anode-free batteries. Proof-of-concept pouch cells deliver an energy density of 325 Watt-hours per kilogram and robust 300 cycles under anode-less condition, opening an avenue with great extendibility for the practical deployment of metal batteries.
钠金属电池在能量密集型和低成本储能技术方面具有巨大潜力,但却因灾难性的枝晶问题而受到严重阻碍。包括亲钠种子/主体界面设计在内的先进策略在抑制枝晶方面取得了巨大成功,但却忽略了电镀前不可避免的界面贫钠问题,这导致钠的过度使用、输出电压的牺牲以及最终能量密度的降低。我们在此证明,精心设计的氟化多孔框架能够同时实现卓越的亲钠性,同时使界面消耗的钠可忽略不计,从而实现无枝晶且耐用的钠电池。正如物理化学和理论表征所阐明的那样,多孔通道上明确的氟化边缘既负责高亲和力以确保均匀沉积,又具有低反应性,从而使电镀时钠的利用率更高。因此,在无阳极电池中实现了协同性能提升,具有稳定的400次循环以及优异的平台容量与倾斜容量比。概念验证软包电池在无阳极条件下可提供每千克325瓦时的能量密度以及稳健的300次循环,为金属电池的实际应用开辟了一条具有巨大扩展性的途径。