Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States.
Biochemistry. 2020 Jun 2;59(21):2032-2040. doi: 10.1021/acs.biochem.0c00241. Epub 2020 May 19.
The D37 and T100' side chains of orotidine 5'-monophosphate decarboxylase (OMPDC) interact with the C-3' and C-2' ribosyl hydroxyl groups, respectively, of the bound substrate. We compare the intra-subunit interactions of D37 with the inter-subunit interactions of T100' by determining the effects of the D37G, D37A, T100'G, and T100'A substitutions on the following: (a) and / values for the OMPDC-catalyzed decarboxylations of OMP and 5-fluoroorotidine 5'-monophosphate (FOMP) and (b) the stability of dimeric OMPDC relative to the monomer. The D37G and T100'A substitutions resulted in 2 kcal mol increases in Δ for / for the decarboxylation of OMP, while the D37A and T100'G substitutions resulted in larger 4 and 5 kcal mol increases, respectively, in Δ. The D37G and T100'A substitutions both resulted in smaller 2 kcal mol decreases in Δ for the decarboxylation of FOMP compared to that of OMP. These results show that the D37G and T100'A substitutions affect the barrier to the chemical decarboxylation step while the D37A and T100'G substitutions also affect the barrier to a slow, ligand-driven enzyme conformational change. Substrate binding induces the movement of an α-helix (G'98-S'106) toward the substrate C-2' ribosyl hydroxy bound at the main subunit. The T100'G substitution destabilizes the enzyme dimer by 3.5 kcal mol compared to the monomer, which is consistent with the known destabilization of α-helices by the internal Gly side chains [Serrano, L., et al. (1992) , , 453-455]. We propose that the T100'G substitution weakens the α-helical contacts at the dimer interface, which results in a decrease in the dimer stability and an increase in the barrier to the ligand-driven conformational change.
OMP 脱羧酶(OMPDC)的 D37 和 T100'侧链分别与结合底物的 C-3'和 C-2'核糖羟基相互作用。我们通过测定 D37G、D37A、T100'G 和 T100'A 取代对以下方面的影响,比较了 D37 与 T100'之间的亚基内相互作用:(a)OMPDC 催化 OMP 和 5-氟尿苷 5'-单磷酸(FOMP)脱羧的 / 值,以及(b)二聚体 OMPDC 相对于单体的稳定性。D37G 和 T100'A 取代导致 OMP 脱羧的 / 增加了 2 kcal/mol,而 D37A 和 T100'G 取代分别导致 Δ 增加了 4 和 5 kcal/mol。D37G 和 T100'A 取代都导致 FOMP 脱羧的 Δ 比 OMP 的 Δ 减少了 2 kcal/mol。这些结果表明,D37G 和 T100'A 取代影响化学脱羧步骤的势垒,而 D37A 和 T100'G 取代也影响缓慢的配体驱动的酶构象变化的势垒。底物结合诱导α-螺旋(G'98-S'106)向主亚基结合的底物 C-2'核糖羟基移动。与单体相比,T100'G 取代使酶二聚体的稳定性降低了 3.5 kcal/mol,这与内部 Gly 侧链对α-螺旋的已知失稳一致[Serrano, L., et al. (1992),, 453-455]。我们提出,T100'G 取代削弱了二聚体界面上的α-螺旋接触,导致二聚体稳定性降低,配体驱动的构象变化势垒增加。