Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
BMC Microbiol. 2020 May 6;20(1):109. doi: 10.1186/s12866-020-01798-4.
A broad range of aromatic compounds can be degraded by enteric bacteria, and hydroxyphenylacetic acid (HPA) degrading bacteria are the most widespread. Majority of Escherichia coli strains can use both the structural isomers of HPA, 3HPA and 4HPA, as the sole carbon source, which are catabolized by the same pathway whose associated enzymes are encoded by hpa gene cluster. Previously, we observed that E. coli B REL606 grew only on 4HPA, while E. coli B BL21(DE3) grew on 3HPA as well as 4HPA.
In this study, we report that a single amino acid in 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of E. coli determines the substrate specificity of HPA isomers. Alignment of protein sequences encoded in hpa gene clusters of BL21(DE3) and REL606 showed that there was a difference of only one amino acid (position 379 in HpaB) between the two, viz., Arg in BL21(DE3) and Cys in REL606. REL606 cells expressing HpaB having Arg379 could grow on 3HPA, whereas those expressing HpaB with Gly379 or Ser379 could not. Structural analysis suggested that the amino acid residue at position 379 of HpaB is located not in the active site, but in the vicinity of the 4HPA binding site, and that it plays an important role in mediating the entrance and stable binding of substrates to the active site.
The arginine residue at position 379 of HpaB is critical for 3HPA recognition. Information regarding the effect of amino acid residues on the substrate specificity of structural isomers can facilitate in designing hydoxylases with high catalytic efficiency and versatility.
肠道细菌可以降解广泛的芳香族化合物,其中羟苯基乙酸(HPA)降解菌最为普遍。大多数大肠杆菌菌株可以同时利用 HPA 的两种结构异构体,3HPA 和 4HPA,作为唯一的碳源,它们通过相同的途径代谢,相关酶由 hpa 基因簇编码。之前,我们观察到大肠杆菌 B REL606 仅在 4HPA 上生长,而大肠杆菌 B BL21(DE3) 则在 3HPA 和 4HPA 上生长。
在这项研究中,我们报告大肠杆菌 4-羟苯基乙酰基 3-羟化酶(HpaB)中的一个单一氨基酸决定了 HPA 异构体的底物特异性。BL21(DE3) 和 REL606 的 hpa 基因簇编码的蛋白质序列比对表明,两者之间仅存在一个氨基酸差异(HpaB 中的 379 位),即 BL21(DE3) 中的精氨酸和 REL606 中的半胱氨酸。表达具有 Arg379 的 HpaB 的 REL606 细胞可以在 3HPA 上生长,而表达具有 Gly379 或 Ser379 的 HpaB 的细胞则不能。结构分析表明,HpaB 第 379 位的氨基酸残基不在活性位点,而是在 4HPA 结合位点附近,它在介导底物进入和稳定结合活性位点方面发挥重要作用。
HpaB 第 379 位的精氨酸残基对于 3HPA 的识别至关重要。有关氨基酸残基对结构异构体底物特异性的影响的信息可以促进设计具有高催化效率和多功能性的羟化酶。