文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用人工智能和12导联心电图早期检测ST段抬高型心肌梗死。

Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram.

作者信息

Zhao Yifan, Xiong Jing, Hou Yang, Zhu Mengyun, Lu Yuyan, Xu Yuanxi, Teliewubai Jiadela, Liu Weijing, Xu Xiao, Li Xin, Liu Zheng, Peng Wenhui, Zhao Xianxian, Zhang Yi, Xu Yawei

机构信息

Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

Shanghai MobileVision Technology Co., Ltd, China.

出版信息

Int J Cardiol. 2020 Oct 15;317:223-230. doi: 10.1016/j.ijcard.2020.04.089. Epub 2020 May 3.


DOI:10.1016/j.ijcard.2020.04.089
PMID:32376417
Abstract

Patient delay is a worldwide unsolved problem in ST-segment elevated myocardial infarction (STEMI). An accurate warning system based on electrocardiogram (ECG) may be a solution for this problem, and artificial intelligence (AI) may offer a path to improve its accuracy and efficiency. In the present study, an AI-based STEMI autodiagnosis algorithm was developed using a dataset of 667 STEMI ECGs and 7571 control ECGs. The algorithm for detecting STEMI proposed in the present study achieved an area under the receiver operating curve (AUC) of 0.9954 (95% CI, 0.9885 to 1) with sensitivity (recall), specificity, accuracy, precision and F1 scores of 96.75%, 99.20%, 99.01%, 90.86% and 0.9372 respectively, in the external evaluation. In a comparative test with cardiologists, the algorithm had an AUC of 0.9740 (95% CI, 0.9419 to 1), and its sensitivity (recall), specificity, accuracy, precision, and F1 score were 90%, 98% and 94%, 97.82% and 0.9375 respectively, while the medical doctors had sensitivity (recall), specificity, accuracy, precision and F1 score of 71.73%, 89.33%, 80.53%, 87.05% and 0.8817 respectively. This study developed an AI-based, cardiologist-level algorithm for identifying STEMI.

摘要

患者延误是ST段抬高型心肌梗死(STEMI)领域一个全球范围内尚未解决的问题。基于心电图(ECG)的精确预警系统可能是解决该问题的一个办法,而人工智能(AI)或许能为提高其准确性和效率提供一条途径。在本研究中,利用一个包含667份STEMI心电图和7571份对照心电图的数据集,开发了一种基于AI的STEMI自动诊断算法。本研究中提出的检测STEMI的算法在外部评估中,受试者工作特征曲线下面积(AUC)达到0.9954(95%CI,0.9885至1),灵敏度(召回率)、特异性、准确率、精确率和F1分数分别为96.75%、99.20%、99.01%、90.86%和0.9372。在与心脏病专家的对比测试中,该算法的AUC为0.9740(95%CI,0.9419至1),其灵敏度(召回率)、特异性、准确率、精确率和F1分数分别为90%、98%、94%、97.82%和0.9375,而医生的灵敏度(召回率)、特异性、准确率、精确率和F1分数分别为71.73%、89.33%、80.53%、87.05%和0.8817。本研究开发了一种基于AI的、达到心脏病专家水平的识别STEMI的算法。

相似文献

[1]
Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram.

Int J Cardiol. 2020-10-15

[2]
Artificial intelligence-assisted remote detection of ST-elevation myocardial infarction using a mini-12-lead electrocardiogram device in prehospital ambulance care.

Front Cardiovasc Med. 2022-10-14

[3]
AI-enabled ECG index for predicting left ventricular dysfunction in patients with ST-segment elevation myocardial infarction.

Sci Rep. 2024-7-17

[4]
Implementation of an All-Day Artificial Intelligence-Based Triage System to Accelerate Door-to-Balloon Times.

Mayo Clin Proc. 2022-12

[5]
Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram.

Eur Heart J Digit Health. 2021-2-26

[6]
[Application of wearable 12-lead electrocardiogram devices in pre-hospital diagnosis of acute ST segment elevation myocardial infarction].

Nan Fang Yi Ke Da Xue Xue Bao. 2022-10-20

[7]
Development of Clinically Validated Artificial Intelligence Model for Detecting ST-segment Elevation Myocardial Infarction.

Ann Emerg Med. 2024-11

[8]
A Novel Algorithm for Improving the Prehospital Diagnostic Accuracy of ST-Segment Elevation Myocardial Infarction.

Prehosp Disaster Med. 2024-2

[9]
A Novel Algorithm for Improving the Diagnostic Accuracy of Prehospital ST-Elevation Myocardial Infarction.

Prehosp Disaster Med. 2019-9-11

[10]
Compared with physician overread, computer is less accurate but helpful in interpretation of electrocardiography for ST-segment elevation myocardial infarction.

J Electrocardiol. 2023

引用本文的文献

[1]
Artificial Intelligence (AI) and Emergency Medicine: Balancing Opportunities and Challenges.

JMIR Med Inform. 2025-8-13

[2]
A tailored deep learning approach for early detection of oral cancer using a 19-layer CNN on clinical lip and tongue images.

Sci Rep. 2025-7-4

[3]
Artificial Intelligence and Its Role in the Diagnosis and Prediction of Adverse Events in Acute Coronary Syndrome: A Narrative Review of the Literature.

Life (Basel). 2025-3-21

[4]
Artificial Intelligence in the Heart of Medicine: A Systematic Approach to Transforming Arrhythmia Care with Intelligent Systems.

Curr Cardiol Rev. 2025

[5]
A Clinical Evaluation of Cardiovascular Emergencies: A Comparison of Responses from ChatGPT, Emergency Physicians, and Cardiologists.

Diagnostics (Basel). 2024-12-4

[6]
An explainable deep learning model to predict partial anomalous pulmonary venous connection for patients with atrial septal defect.

BMC Pediatr. 2024-11-8

[7]
ECG data analysis to determine ST-segment elevation myocardial infarction and infarction territory type: an integrative approach of artificial intelligence and clinical guidelines.

Front Physiol. 2024-10-7

[8]
AI-Enhanced ECG Applications in Cardiology: Comprehensive Insights from the Current Literature with a Focus on COVID-19 and Multiple Cardiovascular Conditions.

Diagnostics (Basel). 2024-8-23

[9]
JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia.

J Arrhythm. 2024-6-12

[10]
Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years.

Diagnostics (Basel). 2024-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索