Suppr超能文献

医学核心领域的人工智能:利用智能系统转变心律失常护理的系统方法。

Artificial Intelligence in the Heart of Medicine: A Systematic Approach to Transforming Arrhythmia Care with Intelligent Systems.

作者信息

Hamad Adel Khalifa Sultan, Haji Jassim

机构信息

Department of Electrophysiology, Mohammed Bin Khalifa Bin Salman Al Khalifa Cardiac Centre, Awali, Kingdom of Bahrain.

International Group of Artificial Intelligence, Manama, Kingdom of Bahrain.

出版信息

Curr Cardiol Rev. 2025;21(4):e1573403X334095. doi: 10.2174/011573403X334095241205041550.

Abstract

BACKGROUND

At a critical juncture in the ongoing fight against cardiovascular disease (CVD), healthcare professionals are striving for more informed and expedited decisionmaking. Artificial intelligence (AI) promises to be a guiding light in this endeavor. The diagnosis of coronary artery disease has now become non-invasive and convenient, while wearable devices excel at promptly detecting life-threatening arrhythmias and treatments for heart failure.

OBJECTIVE

This study aimed to highlight the applications of AI in cardiology with a particular focus on arrhythmias and its potential impact on healthcare for all through careful implementation and constant research efforts.

METHODS

An extensive search strategy was implemented. The search was conducted in renowned electronic medical databases, including Medline, PubMed, Cochrane Library, and Google Scholar. Artificial Intelligence, cardiovascular diseases, arrhythmias, machine learning, and convolutional neural networks in cardiology were used as keywords for the search strategy.

RESULTS

A total of 6876 records were retrieved from different electronic databases. Duplicates (N = 1356) were removed, resulting in 5520 records for screening. Based on predefined inclusion and exclusion criteria, 4683 articles were excluded. Following the full-text screening of the remaining 837 articles, a further 637 were excluded. Ultimately, 200 studies were included in this review.

CONCLUSION

AI represents not just a development but a cutting-edge force propelling the next evolution of cardiology. With its capacity to make precise predictions, facilitate non-invasive diagnosis, and personalize therapies, AI holds the potential to save lives and enhance healthcare quality on a global scale.

摘要

背景

在当前抗击心血管疾病(CVD)的关键节点,医疗保健专业人员正在努力做出更明智、更迅速的决策。人工智能(AI)有望成为这一努力中的一盏明灯。冠状动脉疾病的诊断现已变得无创且便捷,而可穿戴设备在及时检测危及生命的心律失常以及心力衰竭治疗方面表现出色。

目的

本研究旨在突出人工智能在心脏病学中的应用,特别关注心律失常,以及通过谨慎实施和持续研究努力,其对全民医疗保健的潜在影响。

方法

实施了广泛的检索策略。检索在著名的电子医学数据库中进行,包括Medline、PubMed、Cochrane图书馆和谷歌学术。将“人工智能”“心血管疾病”“心律失常”“机器学习”和“心脏病学中的卷积神经网络”用作检索策略的关键词。

结果

从不同电子数据库中总共检索到6876条记录。去除重复记录(n = 1356),得到5520条记录用于筛选。根据预定义的纳入和排除标准,排除了4683篇文章。在对其余837篇文章进行全文筛选后,又排除了637篇。最终,本综述纳入了200项研究。

结论

人工智能不仅代表着一种发展,更是推动心脏病学下一次演进的前沿力量。凭借其进行精确预测、促进无创诊断和个性化治疗的能力,人工智能有潜力在全球范围内拯救生命并提高医疗保健质量。

相似文献

1
Artificial Intelligence in the Heart of Medicine: A Systematic Approach to Transforming Arrhythmia Care with Intelligent Systems.
Curr Cardiol Rev. 2025;21(4):e1573403X334095. doi: 10.2174/011573403X334095241205041550.
2
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
3
Artificial intelligence systems in dental shade-matching: A systematic review.
J Prosthodont. 2024 Jul;33(6):519-532. doi: 10.1111/jopr.13805. Epub 2023 Dec 6.
5
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
8
Artificial intelligence for detecting keratoconus.
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
9
Dietary Approaches to Stop Hypertension (DASH) for the primary and secondary prevention of cardiovascular diseases.
Cochrane Database Syst Rev. 2025 May 6;5(5):CD013729. doi: 10.1002/14651858.CD013729.pub2.
10

本文引用的文献

1
Trustworthy and ethical AI-enabled cardiovascular care: a rapid review.
BMC Med Inform Decis Mak. 2024 Sep 4;24(1):247. doi: 10.1186/s12911-024-02653-6.
2
The Use of Artificial Intelligence for Detecting and Predicting Atrial Arrhythmias Post Catheter Ablation.
Rev Cardiovasc Med. 2023 Jul 31;24(8):215. doi: 10.31083/j.rcm2408215. eCollection 2023 Aug.
3
Detecting Left Heart Failure in Echocardiography through Machine Learning: A Systematic Review.
Rev Cardiovasc Med. 2022 Dec 12;23(12):402. doi: 10.31083/j.rcm2312402. eCollection 2022 Dec.
4
Application of Deep Learning for Real-Time Ablation Zone Measurement in Ultrasound Imaging.
Cancers (Basel). 2024 Apr 27;16(9):1700. doi: 10.3390/cancers16091700.
5
First clinical data on artificial intelligence-guided catheter ablation in long-standing persistent atrial fibrillation.
J Cardiovasc Electrophysiol. 2024 Mar;35(3):406-414. doi: 10.1111/jce.16184. Epub 2024 Jan 10.
6
Prediction of atrial fibrillation from at-home single-lead ECG signals without arrhythmias.
NPJ Digit Med. 2023 Dec 12;6(1):229. doi: 10.1038/s41746-023-00966-w.
7
Holistic Approaches to Arrhythmia Management: Combining Medication, Ablation, and Device Interventions.
Cureus. 2023 Sep 25;15(9):e45958. doi: 10.7759/cureus.45958. eCollection 2023 Sep.
8
Deep Learning of Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial Fibrillation.
JAMA Cardiol. 2023 Dec 1;8(12):1131-1139. doi: 10.1001/jamacardio.2023.3701.
9
Artificial Intelligence in the Image-Guided Care of Atrial Fibrillation.
Life (Basel). 2023 Sep 5;13(9):1870. doi: 10.3390/life13091870.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验