Chang Kuan-Cheng, Hsieh Po-Hsin, Wu Mei-Yao, Wang Yu-Chen, Wei Jung-Ting, Shih Edward S C, Hwang Ming-Jing, Lin Wan-Ying, Lin Wan-Ting, Lee Kuan-Jung, Wang Ti-Hao
Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, 2, Yude Road, North Dist., Taichung 40447, Taiwan.
Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsuehshih Road, Taichung 40402, Taiwan.
Eur Heart J Digit Health. 2021 Feb 26;2(2):299-310. doi: 10.1093/ehjdh/ztab029. eCollection 2021 Jun.
To develop an artificial intelligence-based approach with multi-labelling capability to identify both ST-elevation myocardial infarction (STEMI) and 12 heart rhythms based on 12-lead electrocardiograms (ECGs).
We trained, validated, and tested a long short-term memory (LSTM) model for the multi-label diagnosis of 13 ECG patterns (STEMI + 12 rhythm classes) using 60 537 clinical ECGs from 35 981 patients recorded between 15 January 2009 and 31 December 2018. In addition to the internal test above, we conducted a real-world external test, comparing the LSTM model with board-certified physicians of different specialties using a separate dataset of 308 ECGs covering all 13 ECG diagnoses. In the internal test, the area under the curves (AUCs) of the LSTM model in classifying the 13 ECG patterns ranged between 0.939 and 0.999. For the external test, the LSTM model for multi-labelling of the 13 ECG patterns evaluated by AUC was 0.987 ± 0.021, which was superior to those of cardiologists (0.898 ± 0.113, < 0.001), emergency physicians (0.820 ± 0.134, < 0.001), internists (0.765 ± 0.155, < 0.001), and a commercial algorithm (0.845 ± 0.121, < 0.001). Of note, the LSTM model achieved an accuracy of 0.987, AUC of 0.997, and precision, recall, and score of 0.952, 0.870, and 0.909, respectively, in detecting STEMI.
We demonstrated the usefulness of an LSTM model in the multi-labelling detection of both rhythm classes and STEMI in competitive testing against board-certified physicians. This AI tool exceeding the cardiologist-level performance in detecting STEMI and rhythm classes on 12-lead ECG may be useful in prioritizing chest pain triage and expediting clinical decision-making in healthcare.
开发一种基于人工智能的多标签方法,以根据12导联心电图(ECG)识别ST段抬高型心肌梗死(STEMI)和12种心律。
我们使用2009年1月15日至2018年12月31日期间记录的来自35981例患者的60537份临床心电图,训练、验证并测试了一种长短期记忆(LSTM)模型,用于对13种心电图模式(STEMI + 12种心律类别)进行多标签诊断。除上述内部测试外,我们还进行了一次真实世界的外部测试,使用包含所有13种心电图诊断的308份心电图的单独数据集,将LSTM模型与不同专业的 board-certified 医生进行比较。在内部测试中,LSTM模型对13种心电图模式进行分类时的曲线下面积(AUC)在0.939至0.999之间。在外部测试中,通过AUC评估的用于对13种心电图模式进行多标签的LSTM模型为0.987±0.021,优于心脏病专家(0.898±0.113,<0.001)、急诊科医生(0.820±0.134,<0.001)、内科医生(0.765±0.155,<0.001)和一种商业算法(0.845±0.121,<0.001)。值得注意的是,LSTM模型在检测STEMI时的准确率为0.987,AUC为0.997,精确率、召回率和F1值分别为0.952、0.870和0.909。
我们证明了LSTM模型在与board-certified医生的竞争性测试中对心律类别和STEMI进行多标签检测的有效性。这种在12导联心电图上检测STEMI和心律类别时超过心脏病专家水平表现的人工智能工具,可能有助于优化胸痛分诊并加快医疗保健中的临床决策。