Suppr超能文献

用于批处理过程监控的大数据方法:基于非线性支持向量机特征选择的同时故障检测与诊断

Big Data Approach to Batch Process Monitoring: Simultaneous Fault Detection and Diagnosis Using Nonlinear Support Vector Machine-based Feature Selection.

作者信息

Onel Melis, Kieslich Chris A, Guzman Yannis A, Floudas Christodoulos A, Pistikopoulos Efstratios N

机构信息

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.

Texas A&M Energy Institute, Texas A&M University, College Station, TX 77843, USA.

出版信息

Comput Chem Eng. 2018 Jul 12;115:46-63. doi: 10.1016/j.compchemeng.2018.03.025. Epub 2018 Mar 28.

Abstract

This paper presents a novel data-driven framework for process monitoring in batch processes, a critical task in industry to attain a safe operability and minimize loss of productivity and profit. We exploit high dimensional process data with nonlinear Support Vector Machine-based feature selection algorithm, where we aim to retrieve the most informative process measurements for accurate and simultaneous fault detection and diagnosis. The proposed framework is applied to an extensive benchmark dataset which includes process data describing 22,200 batches with 15 faults. We train fault and time-specific models on the prealigned batch data trajectories via three distinct time horizon approaches: one-step rolling, two-step rolling, and evolving which varies the amount of data incorporation during modeling. The results show that two-step rolling and evolving time horizon approaches perform superior to the other. Regardless of the approach, proposed framework provides a promising decision support tool for online simultaneous fault detection and diagnosis for batch processes.

摘要

本文提出了一种用于间歇过程过程监控的新型数据驱动框架,这是工业中实现安全可操作性并最大限度减少生产率和利润损失的一项关键任务。我们利用基于非线性支持向量机的特征选择算法处理高维过程数据,旨在获取最具信息性的过程测量值,以进行准确且同步的故障检测与诊断。所提出的框架应用于一个广泛的基准数据集,该数据集包含描述22200个批次且带有15种故障的过程数据。我们通过三种不同的时间范围方法,在预先对齐的批次数据轨迹上训练故障和特定时间模型:一步滚动、两步滚动和逐步演变,后者在建模过程中会改变数据纳入量。结果表明,两步滚动和逐步演变的时间范围方法表现优于其他方法。无论采用哪种方法,所提出的框架都为间歇过程的在线同步故障检测与诊断提供了一个有前景的决策支持工具。

相似文献

引用本文的文献

本文引用的文献

2
Big Data Analytics in Chemical Engineering.化工大数据分析。
Annu Rev Chem Biomol Eng. 2017 Jun 7;8:63-85. doi: 10.1146/annurev-chembioeng-060816-101555. Epub 2017 Feb 27.
4
Design of a novel knowledge-based fault detection and isolation scheme.一种新型基于知识的故障检测与隔离方案的设计。
IEEE Trans Syst Man Cybern B Cybern. 2004 Apr;34(2):1089-95. doi: 10.1109/tsmcb.2003.820595.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验