Onel Melis, Burnak Baris, Pistikopoulos Efstratios N
† Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
‡ Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843, United States.
Ind Eng Chem Res. 2020 Feb 12;59(6):2291-2306. doi: 10.1021/acs.iecr.9b04226. Epub 2019 Nov 21.
We propose a novel active fault-tolerant control strategy that combines machine learning based process monitoring and explicit/multiparametric model predictive control (mp-MPC). The strategy features (i) data-driven fault detection and diagnosis models by using the support vector machine (SVM) algorithm, (ii) ranking via a nonlinear, kernel-dependent, SVM-based feature selection algorithm, (iii) data-driven regression models for fault magnitude estimation via the random forest algorithm, and (iv) a parametric optimization and control (PAROC) framework for the design of the explicit/multiparametric model predictive controller. The resulting explicit control strategies correspond to affine functions of the system states and the magnitude of the detected fault. A semibatch process, an example for penicillin production, is presented to demonstrate how the proposed framework ensures smart operation for which rapid switches between a priori computed explicit control action strategies are enabled by continuous process monitoring information.
我们提出了一种新颖的主动容错控制策略,该策略将基于机器学习的过程监测与显式/多参数模型预测控制(mp-MPC)相结合。该策略的特点包括:(i)使用支持向量机(SVM)算法的数据驱动型故障检测与诊断模型;(ii)通过基于非线性、依赖核的SVM特征选择算法进行排序;(iii)通过随机森林算法进行故障幅度估计的数据驱动型回归模型;以及(iv)用于设计显式/多参数模型预测控制器的参数优化与控制(PAROC)框架。由此产生的显式控制策略对应于系统状态和检测到的故障幅度的仿射函数。给出了一个半间歇过程(青霉素生产的一个例子),以展示所提出的框架如何通过连续的过程监测信息确保智能操作,从而能够在先验计算的显式控制动作策略之间进行快速切换。