Seminar für Sprachwissenschaft, Eberhard-Karls University of Tübingen, Tübingen, Germany.
Department of Linguistics, University of California at Berkeley, Berkeley, CA, USA.
Behav Res Methods. 2021 Jun;53(3):945-976. doi: 10.3758/s13428-020-01356-w.
Pseudowords have long served as key tools in psycholinguistic investigations of the lexicon. A common assumption underlying the use of pseudowords is that they are devoid of meaning: Comparing words and pseudowords may then shed light on how meaningful linguistic elements are processed differently from meaningless sound strings. However, pseudowords may in fact carry meaning. On the basis of a computational model of lexical processing, linear discriminative learning (LDL Baayen et al., Complexity, 2019, 1-39, 2019), we compute numeric vectors representing the semantics of pseudowords. We demonstrate that quantitative measures gauging the semantic neighborhoods of pseudowords predict reaction times in the Massive Auditory Lexical Decision (MALD) database (Tucker et al., 2018). We also show that the model successfully predicts the acoustic durations of pseudowords. Importantly, model predictions hinge on the hypothesis that the mechanisms underlying speech production and comprehension interact. Thus, pseudowords emerge as an outstanding tool for gauging the resonance between production and comprehension. Many pseudowords in the MALD database contain inflectional suffixes. Unlike many contemporary models, LDL captures the semantic commonalities of forms sharing inflectional exponents without using the linguistic construct of morphemes. We discuss methodological and theoretical implications for models of lexical processing and morphological theory. The results of this study, complementing those on real words reported in Baayen et al., (Complexity, 2019, 1-39, 2019), thus provide further evidence for the usefulness of LDL both as a cognitive model of the mental lexicon, and as a tool for generating new quantitative measures that are predictive for human lexical processing.
假词长期以来一直是心理语言学词汇研究的重要工具。使用假词的一个常见假设是它们没有意义:因此,比较单词和假词可以揭示有意义的语言元素如何与无意义的声音串不同地被处理。然而,假词实际上可能具有意义。基于词汇处理的计算模型——线性判别学习(LDL)(Baayen 等人,复杂性,2019 年,1-39,2019 年),我们计算表示假词语义的数字向量。我们证明,衡量假词语义邻近度的定量指标可以预测 Massive Auditory Lexical Decision(MALD)数据库中的反应时间(Tucker 等人,2018 年)。我们还表明,该模型可以成功预测假词的声学持续时间。重要的是,模型预测取决于这样一个假设,即言语产生和理解的机制相互作用。因此,假词成为衡量产生和理解之间共鸣的杰出工具。MALD 数据库中的许多假词都包含屈折后缀。与许多当代模型不同,LDL 无需使用形态学的语言结构即可捕获共享屈折词素的形式的语义共性。我们讨论了词汇处理模型和形态理论的方法和理论意义。本研究的结果,补充了 Baayen 等人在真实单词上的研究结果(复杂性,2019 年,1-39,2019 年),为 LDL 作为心理词汇的认知模型以及作为生成对人类词汇处理具有预测性的新定量指标的工具提供了进一步的证据。