Suppr超能文献

通过消除柠檬酸积累和增强糖酵解通量来提高产苹果酸。

Improved Production of Malic Acid in by Abolishing Citric Acid Accumulation and Enhancing Glycolytic Flux.

机构信息

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China.

Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, 300457 Tianjin, China.

出版信息

ACS Synth Biol. 2020 Jun 19;9(6):1418-1425. doi: 10.1021/acssynbio.0c00096. Epub 2020 May 21.

Abstract

Microbial fermentation was widely explored to produce malic acid. Previously, has been successfully engineered, and a high titer of malic acid was achieved with strain S575, but it also produced a high level of byproduct citric acid. Here, the capability of in malic acid biosynthesis was further improved by eliminating the accumulation of citric acid and enhancing glycolytic flux. Characterization of variant mutants suggested that disruption of , a gene encoding citric acid transporter located on cell membrane, abolished citric acid accumulation. However, -deficient strain S895 showed significantly decreased malic acid production. Further analysis of S895 indicated that the transcription level of genes involved in glucose transportation and glycolytic pathway was significantly reduced, and the corresponding enzyme activity was also lower than those of S575. Individual overexpression of genes encoding glucose transporter MstC and key enzymes (hexokinase HxkA, 6-phosphofructo-2-kinase PfkA, and pyruvate kinase PkiA) involved in irreversible reactions of glycolic pathway increased malic acid production. Accordingly, genes of , , , and were overexpressed altogether in S895, and the resultant strain S1149 was constructed. The titer of malic acid in fed-batch fermentation with S1149 reached 201.13 g/L. Compared with S575, the byproduct of citric acid was completely abolished in S1149, and the ratio of malic acid/glucose was increased from 1.27 to 1.64 mol/mol, the highest yield reported so far, and the fermentation period was shortened from 9 to 8 days. Thus, a strain with great industrial application potential was developed by engineering nine genes in , and a pilot fermentation technology was exploited.

摘要

微生物发酵被广泛用于生产苹果酸。此前,已经成功进行了工程改造,使用 S575 菌株实现了苹果酸的高产量,但也产生了高水平的副产物柠檬酸。在这里,通过消除柠檬酸的积累和增强糖酵解通量,进一步提高了 在苹果酸生物合成中的能力。变体突变体的特征表明,破坏位于细胞膜上的柠檬酸转运蛋白基因 ,可消除柠檬酸的积累。然而,-缺陷型菌株 S895 的苹果酸产量明显降低。对 S895 的进一步分析表明,涉及葡萄糖运输和糖酵解途径的基因的转录水平显著降低,相应的酶活性也低于 S575。单独过表达编码葡萄糖转运体 MstC 和参与糖酵解途径不可逆反应的关键酶(己糖激酶 HxkA、6-磷酸果糖-2-激酶 PfkA 和丙酮酸激酶 PkiA)的基因增加了苹果酸的产量。因此,在 S895 中共过表达 、 、 、 和 基因,构建了 S1149 菌株。使用 S1149 进行分批补料发酵,苹果酸的产量达到 201.13 g/L。与 S575 相比,S1149 中的柠檬酸副产物完全消除,苹果酸/葡萄糖的比例从 1.27 增加到 1.64 mol/mol,这是迄今为止报道的最高产量,发酵周期从 9 天缩短到 8 天。因此,通过工程改造 中的 9 个基因,开发了具有巨大工业应用潜力的菌株,并开发了中试发酵技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验