Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland.
Biochim Biophys Acta Biomembr. 2020 Sep 1;1862(9):183337. doi: 10.1016/j.bbamem.2020.183337. Epub 2020 May 4.
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BK) channel, including the mitochondrial BK (mitoBK) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ) and its fragment, Aβ, on the activity of mitoBK channels. We found that all forms of Aβ inhibited the activity of the mitoBK channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBK channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ, demonstrated similar inhibitory activity towards mitoBK channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
阿尔茨海默病(AD)的致病因子是一种短的两亲性肽,称为淀粉样β(Aβ)。Aβ单体发生结构变化,导致其寡聚化或纤维形成。单体以及 Aβ 的所有聚集形式,即寡聚物和纤维,都可以与生物膜结合,从而调节膜的机械性能。已知大电导钙激活钾(BK)通道的一些同工型,包括线粒体 BK(mitoBK)通道,对膜的机械变化有反应。在这里,我们使用膜片钳技术研究了全长 Aβ(Aβ)及其片段 Aβ 对 mitoBK 通道活性的影响。我们发现所有形式的 Aβ都以浓度依赖的方式抑制 mitoBK 通道的活性。由于 Aβ 的单体、寡聚体和纤维表现出不同的分子特征和结构,我们假设这种抑制不是由于肽-蛋白的直接相互作用,而是由于 Aβ 肽与膜的结合。我们的研究结果支持了这一假设,表明 Aβ 肽无论应用于膜的哪一侧都能阻断 mitoBK 通道。此外,我们发现对映体肽 D-Aβ 对 mitoBK 通道也表现出类似的抑制活性。因此,我们提出了一个普遍的模型,即所有的 Aβ 形式,即单体、寡聚体和淀粉样纤维,通过对机械敏感的膜成分施加调节作用,促进 AD 的进展。