Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Medicinal Chemistry, 106 Lodowa St., 92-232 Lodz, Poland.
Biomolecules. 2020 May 5;10(5):718. doi: 10.3390/biom10050718.
Antisense oligonucleotides conjugated with boron clusters (B-ASOs) have been described as potential gene expression inhibitors and carriers of boron for boron neutron capture therapy (BNCT), providing a dual-action therapeutic platform. In this study, we tested the nucleolytic stability of DNA oligonucleotides labeled with metallacarborane [(3,3'-iron-1,2,1',2'-dicarbollide)(-1)]ate [Fe(CBH)] (FESAN) against snake venom phosphodiesterase (svPDE, 3'→5'-exonuclease). Contrary to the previously observed protective effect of carborane (CBH) modifications, the B-ASOs containing a metallacarborane moiety at the 5'-end of the oligonucleotide chain were hydrolyzed faster than their parent nonmodified oligomers. Interestingly, an enhancement in the hydrolysis rate was also observed in the presence of free metallacarborane, and this reaction was dependent on the concentration of the metallacarborane. Microscale thermophoresis (MST) analysis confirmed the high affinity ( nM range) of the binding of the metallacarborane to the proteins of crude snake venom and the moderate affinity ( µM range) between the metallacarborane and the short single-stranded DNA. We hypothesize that the metallacarborane complex covalently bound to B-ASO holds DNA molecules close to the protein surface, facilitating enzymatic cleavage. The addition of metallacarborane alone to the ASO/svPDE reaction mixture provides the interface to attract freely floating DNA molecules. In both cases, the local DNA concentration around the enzymes increases, giving rise to faster hydrolysis. It was experimentally shown that an allosteric effect, possibly attributable to the observed boost in the 3´→5´-exonucleolytic activity of snake venom phosphodiesterase, is much less plausible.
与硼簇缀合的反义寡核苷酸(B-ASO)已被描述为潜在的基因表达抑制剂和硼的载体,用于硼中子俘获治疗(BNCT),提供了一种双重作用的治疗平台。在这项研究中,我们测试了用金属碳硼烷[(3,3'-铁-1,2,1',2'-二碳硼烷)(-1)]酸根[Fe(CBH)](FESAN)标记的脱氧核苷酸对蛇毒磷酸二酯酶(svPDE,3'→5'-核酸外切酶)的核裂解稳定性。与先前观察到的碳硼烷(CBH)修饰的保护作用相反,寡核苷酸链 5'-端含有金属碳硼烷部分的 B-ASO 比其母体非修饰寡聚物水解更快。有趣的是,在存在游离金属碳硼烷的情况下,水解速率也得到了提高,并且该反应取决于金属碳硼烷的浓度。微量热泳动(MST)分析证实了金属碳硼烷与粗蛇毒液中的蛋白质的高亲和力(nM 范围)以及金属碳硼烷与短单链 DNA 之间的中等亲和力(µM 范围)。我们假设与 B-ASO 共价结合的金属碳硼烷复合物将 DNA 分子紧密固定在蛋白质表面,促进酶切。将金属碳硼烷单独添加到 ASO/svPDE 反应混合物中,为吸引自由漂浮的 DNA 分子提供了界面。在这两种情况下,酶周围的局部 DNA 浓度增加,导致水解更快。实验表明,变构效应(可能归因于观察到的蛇毒磷酸二酯酶 3'→5'-核酸外切酶活性的提高)不太可能。