Suppr超能文献

激光诱导的金镍纳米颗粒亚稳混合相:相干X射线衍射成像研究

Laser-induced metastable mixed phase of AuNi nanoparticles: a coherent X-ray diffraction imaging study.

作者信息

Kim Yoonhee, Kim Chan, Ahn Kangwoo, Choi Jungwon, Lee Su Yong, Kang Hyon Chol, Noh Do Young

机构信息

European X-ray Free Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany.

Department of Physics and Photon Science and School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 61005 Gwangju, Korea.

出版信息

J Synchrotron Radiat. 2020 May 1;27(Pt 3):725-729. doi: 10.1107/S1600577520001617. Epub 2020 Mar 31.

Abstract

The laser annealing process for AuNi nanoparticles has been visualized using coherent X-ray diffraction imaging (CXDI). AuNi bimetallic alloy nanoparticles, originally phase separated due to the miscibility gap, transform to metastable mixed alloy particles with rounded surface as they are irradiated by laser pulses. A three-dimensional CXDI shows that the internal part of the AuNi particles is in the mixed phase with preferred compositions at ∼29 at% of Au and ∼90 at% of Au.

摘要

利用相干X射线衍射成像(CXDI)对金镍纳米颗粒的激光退火过程进行了可视化研究。由于混溶间隙原本相分离的金镍双金属合金纳米颗粒,在受到激光脉冲照射时转变为具有圆形表面的亚稳态混合合金颗粒。三维CXDI显示,金镍颗粒的内部处于混合相,其中金的含量约为29原子%,金的含量约为90原子%时具有优先组成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7adf/7206555/0854e88d298c/s-27-00725-fig1.jpg

相似文献

1
Laser-induced metastable mixed phase of AuNi nanoparticles: a coherent X-ray diffraction imaging study.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):725-729. doi: 10.1107/S1600577520001617. Epub 2020 Mar 31.
2
Ligand-assisted morphology regulation of AuNi bimetallic nanocrystals for efficient hydrogen evolution.
RSC Adv. 2023 Jan 4;13(2):1229-1235. doi: 10.1039/d2ra06325e. eCollection 2023 Jan 3.
3
Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.
Plant Cell Physiol. 2015 Jul;56(7):1272-86. doi: 10.1093/pcp/pcv032. Epub 2015 Mar 5.
4
A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support.
Chemosphere. 2022 Mar;291(Pt 3):132718. doi: 10.1016/j.chemosphere.2021.132718. Epub 2021 Oct 28.
6
Classification of projection images of proteins with structural polymorphism by manifold: a simulation study for x-ray free-electron laser diffraction imaging.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032710. doi: 10.1103/PhysRevE.92.032710. Epub 2015 Sep 14.
8
Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate analysis.
J Synchrotron Radiat. 2016 Jan;23(1):312-23. doi: 10.1107/S1600577515018202. Epub 2016 Jan 1.
9
Atmospheric coherent X-ray diffraction imaging for in situ structural analysis at SPring-8 Hyogo beamline BL24XU.
J Synchrotron Radiat. 2018 Jul 1;25(Pt 4):1229-1237. doi: 10.1107/S1600577518006410.
10
Dynamic X-ray Coherent Diffraction Analysis: Bridging the Time Scales between Imaging and Photon Correlation Spectroscopy.
Nano Lett. 2024 Oct 30;24(43):13702-13707. doi: 10.1021/acs.nanolett.4c03699. Epub 2024 Oct 18.

本文引用的文献

1
Three-Dimensional Imaging of Phase Ordering in an Fe-Al Alloy by Bragg Ptychography.
Phys Rev Lett. 2018 Dec 21;121(25):256101. doi: 10.1103/PhysRevLett.121.256101.
2
In situ coherent diffractive imaging.
Nat Commun. 2018 May 8;9(1):1826. doi: 10.1038/s41467-018-04259-9.
3
High-Strength Nanotwinned Al Alloys with 9R Phase.
Adv Mater. 2018 Mar;30(11). doi: 10.1002/adma.201704629. Epub 2018 Jan 22.
5
Three-dimensional magnetization structures revealed with X-ray vector nanotomography.
Nature. 2017 Jul 19;547(7663):328-331. doi: 10.1038/nature23006.
6
Revealing crystalline domains in a mollusc shell single-crystalline prism.
Nat Mater. 2017 Sep;16(9):946-952. doi: 10.1038/nmat4937. Epub 2017 Jul 10.
7
Visualization of a Mammalian Mitochondrion by Coherent X-ray Diffractive Imaging.
Sci Rep. 2017 May 12;7(1):1850. doi: 10.1038/s41598-017-01833-x.
8
Dual-phase nanostructuring as a route to high-strength magnesium alloys.
Nature. 2017 May 4;545(7652):80-83. doi: 10.1038/nature21691. Epub 2017 Apr 5.
9
Grain boundary stability governs hardening and softening in extremely fine nanograined metals.
Science. 2017 Mar 24;355(6331):1292-1296. doi: 10.1126/science.aal5166.
10
Cross-sectional characterization of the dewetting of a Au/Ni bilayer film.
Ultramicroscopy. 2017 Jul;178:131-139. doi: 10.1016/j.ultramic.2016.06.004. Epub 2016 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验