International Institute for Applied Systems Analysis, Schlossplatz 1, 2361, Laxenburg, Austria.
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK.
Nat Commun. 2020 May 7;11(1):2239. doi: 10.1038/s41467-020-16012-2.
The risks of cooling water shortages to thermo-electric power plants are increasingly studied as an important climate risk to the energy sector. Whilst electricity transmission networks reduce the risks during disruptions, more costly plants must provide alternative supplies. Here, we investigate the electricity price impacts of cooling water shortages on Britain's power supplies using a probabilistic spatial risk model of regional climate, hydrological droughts and cooling water shortages, coupled with an economic model of electricity supply, demand and prices. We find that on extreme days (p99), almost 50% (7GW) of freshwater thermal capacity is unavailable. Annualized cumulative costs on electricity prices range from £29-66m.yr GBP2018, whilst in 20% of cases from £66-95m.yr. With climate change, the median annualized impact exceeds £100m.yr. The single year impacts of a 1-in-25 year event exceed >£200m, indicating the additional investments justifiable to mitigate the 1-order economic risks of cooling water shortage during droughts.
作为能源部门面临的一项重要气候风险,冷却用水短缺对火力发电厂的风险正日益受到研究。虽然输电网在中断期间会降低风险,但成本更高的工厂必须提供替代供应。在这里,我们使用区域气候、水文干旱和冷却用水短缺的概率空间风险模型,以及电力供应、需求和价格的经济模型,研究了英国电力供应中冷却用水短缺对电价的影响。我们发现,在极端天气(p99)下,近 50%(7GW)的淡水热容量无法使用。按 2018 年英镑计价,年化累计成本在 2900 万至 6600 万英镑之间,而在 20%的情况下,成本在 6600 万至 9500 万英镑之间。随着气候变化,年化中位数影响超过 1 亿英镑。在 1 次/25 年的事件中,单年影响超过 2 亿英镑,这表明在干旱期间,为缓解冷却用水短缺带来的 1 级经济风险而进行的额外投资是合理的。