Mukwaya Vincent, Zhang Peipei, Guo Heze, Dang-I Auphedeous Yinme, Hu Qiangqiang, Li Mei, Mann Stephen, Dou Hongjing
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
ACS Nano. 2020 Jul 28;14(7):7899-7910. doi: 10.1021/acsnano.0c02127. Epub 2020 May 15.
The spontaneous assembly of nanoscale building blocks into continuous semipermeable membranes is a key requirement for the structuration of synthetic protocells. Engineering the functionality and programmability of these building units provides a step toward more complex cell-like entities with adaptive membrane properties. Inspired by the central role of protein (lectin)-carbohydrate interactions in cellular recognition and adhesion, we fabricate semipermeable polysaccharide-polymer microcapsules (polysaccharidosomes) with intrinsic lectin-binding properties. We employ amphiphilic polysaccharide-polymer membrane building blocks endowed with intrinsic bio-orthogonal lectin-glycan recognition sites to facilitate the reversible noncovalent docking of functionalized polymer or zeolitic nanoparticles on the polysaccharidosomes. We show that the programmed attachment of enzyme-loaded nanoparticles gives rise to a membrane-gated spatially localized cascade reaction within the protocells due to the thermoresponsiveness of the polysaccharidosome membrane, and we demonstrate that extended closely packed networks are produced via reversible lectin-mediated adhesion between the protocells. Our results provide a step toward nanoscale engineering of bioinspired cell-like materials and could have longer-term applications in synthetic virology, protobiology, and microbiosensor and microbioreactor technologies.
将纳米级构建块自组装成连续的半透膜是合成原始细胞结构化的关键要求。设计这些构建单元的功能和可编程性是迈向具有适应性膜特性的更复杂细胞样实体的重要一步。受蛋白质(凝集素)-碳水化合物相互作用在细胞识别和黏附中的核心作用启发,我们制备了具有内在凝集素结合特性的半透性多糖-聚合物微胶囊(多糖体)。我们使用具有内在生物正交凝集素-聚糖识别位点的两亲性多糖-聚合物膜构建块,以促进功能化聚合物或沸石纳米颗粒在多糖体上的可逆非共价对接。我们表明,由于多糖体膜的热响应性,负载酶的纳米颗粒的程序化附着会在原始细胞内引发膜门控的空间局部级联反应,并且我们证明通过原始细胞之间可逆的凝集素介导的黏附产生了紧密堆积的扩展网络。我们的结果是迈向受生物启发的细胞样材料纳米级工程的重要一步,并且可能在合成病毒学、原始生物学以及微生物传感器和微生物反应器技术中具有长期应用。