Trachman Robert J, Cojocaru Razvan, Wu Di, Piszczek Grzegorz, Ryckelynck Michael, Unrau Peter J, Ferré-D'Amaré Adrian R
Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA.
Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
Structure. 2020 Jul 7;28(7):776-785.e3. doi: 10.1016/j.str.2020.04.007. Epub 2020 May 7.
Fluorescent RNA aptamers have been used in cells as biosensor reporters and tags for tracking transcripts. Recently, combined SELEX and microfluidic fluorescence sorting yielded three aptamers that activate fluorescence of TO1-Biotin: Mango-II, Mango-III, and Mango-IV. Of these, Mango-IV was best at imaging RNAs in both fixed and live mammalian cells. To understand how Mango-IV achieves activity in cells, we determined its crystal structure complexed with TO1-Biotin. The structure reveals a domain-swapped homodimer with two independent G-quadruplex fluorophore binding pockets. Structure-based analyses indicate that the Mango-IV core has relaxed fluorophore specificity, and a tendency to reorganize binding pocket residues. These molecular properties may endow it with robustness in the cellular milieu. Based on the domain-swapped structure, heterodimers between Mango-IV and the fluorescent aptamer iSpinach, joined by Watson-Crick base pairing, were constructed. These exhibited FRET between their respective aptamer-activated fluorophores, advancing fluorescent aptamer technology toward multi-color, RNA-based imaging of RNA coexpression and colocalization.
荧光RNA适体已在细胞中用作生物传感器报告分子和用于追踪转录本的标签。最近,结合指数富集的配体系统进化(SELEX)和微流控荧光分选技术得到了三种能激活TO1-生物素荧光的适体:Mango-II、Mango-III和Mango-IV。其中,Mango-IV在固定和活的哺乳动物细胞中对RNA成像表现最佳。为了解Mango-IV在细胞中实现活性的机制,我们确定了其与TO1-生物素复合的晶体结构。该结构揭示了一个结构域交换的同二聚体,具有两个独立的G-四链体荧光团结合口袋。基于结构的分析表明,Mango-IV核心具有较宽松的荧光团特异性,且有重组结合口袋残基的倾向。这些分子特性可能使其在细胞环境中具有稳健性。基于结构域交换结构,构建了通过沃森-克里克碱基配对连接的Mango-IV与荧光适体iSpinach之间的异二聚体。这些异二聚体在各自适体激活的荧光团之间表现出荧光共振能量转移(FRET),推动荧光适体技术朝着基于RNA的多色RNA共表达和共定位成像发展。