Suppr超能文献

最大限度地利用二级心理健康电子健康记录中的社会和行为信息。

Maximizing the use of social and behavioural information from secondary care mental health electronic health records.

作者信息

Goodday S M, Kormilitzin A, Vaci N, Liu Q, Cipriani A, Smith T, Nevado-Holgado A

机构信息

Department of Psychiatry, University of Oxford, United Kingdom; 4youandme, Seattle, WA, USA.

Department of Psychiatry, University of Oxford, United Kingdom.

出版信息

J Biomed Inform. 2020 Jul;107:103429. doi: 10.1016/j.jbi.2020.103429. Epub 2020 May 5.

Abstract

PURPOSE

The contribution of social and behavioural factors in the development of mental health conditions and treatment effectiveness is widely supported, yet there are weak population level data sources on social and behavioural determinants of mental health. Enriching these data gaps will be crucial to accelerating precision medicine. Some have suggested the broader use of electronic health records (EHR) as a source of non-clinical determinants, although social and behavioural information are not systematically collected metrics in EHRs, internationally.

OBJECTIVE

In this commentary, we highlight the nature and quality of key available structured and unstructured social and behavioural data using a case example of value counts from secondary mental health data available in the UK from the UK Clinical Record Interactive Search (CRIS) database; highlight the methodological challenges in the use of such data; and possible solutions and opportunities involving the use of natural language processing (NLP) of unstructured EHR text.

CONCLUSIONS

Most structured non-clinical data fields within secondary care mental health EHR data have too much missing data for adequate use. The utility of other non-clinical fields reported semi-consistently (e.g., ethnicity and marital status) is entirely dependent on treating them appropriately in analyses, quantifying the many reasons behind missingness in consideration of selection biases. Advancements in NLP offer new opportunities in the exploitation of unstructured text from secondary care EHR data particularly given that clinical notes and attachments are available in large volumes of patients and are more routinely completed by clinicians. Tackling ways to re-use, harmonize, and improve our existing and future secondary care mental health data, leveraging advanced analytics such as NLP is worth the effort in an attempt to fill the data gap on social and behavioural contributors to mental health conditions and will be necessary to fulfill all of the domains needed to inform personalized interventions.

摘要

目的

社会和行为因素对心理健康状况发展及治疗效果的影响得到广泛支持,但关于心理健康的社会和行为决定因素,在人群层面上的数据来源较为薄弱。填补这些数据空白对于加速精准医学至关重要。一些人建议更广泛地使用电子健康记录(EHR)作为非临床决定因素的来源,尽管在国际上,社会和行为信息并非电子健康记录中系统收集的指标。

目标

在本评论中,我们以英国临床记录交互式搜索(CRIS)数据库中可获取的二级心理健康数据的价值计数为例,突出关键的现有结构化和非结构化社会及行为数据的性质和质量;强调使用此类数据时的方法学挑战;以及涉及对非结构化电子健康记录文本进行自然语言处理(NLP)的可能解决方案和机会。

结论

二级护理心理健康电子健康记录数据中的大多数结构化非临床数据字段缺失数据过多,无法充分利用。其他半一致报告的非临床字段(如种族和婚姻状况)的效用完全取决于在分析中对其进行适当处理,在考虑选择偏倚的情况下量化缺失背后的诸多原因。自然语言处理的进展为利用二级护理电子健康记录数据中的非结构化文本提供了新机会,特别是考虑到大量患者都有临床记录和附件,且临床医生更常规地完成这些记录。解决重新使用、协调和改进我们现有及未来二级护理心理健康数据的方法,利用自然语言处理等先进分析技术是值得努力的,这有助于填补心理健康状况的社会和行为影响因素方面的数据空白,也是实现个性化干预所需的所有领域的必要条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验