Suppr超能文献

医疗保健中的数据隐私:全球挑战与解决方案。

Data privacy in healthcare: Global challenges and solutions.

作者信息

Conduah Andrew Kweku, Ofoe Sebastian, Siaw-Marfo Dorothy

机构信息

Department of Business Administration, Institute of Work, Employment & Society (IWES), University of Professional Studies (UPSA), Accra, Ghana.

Regional Institute for Population Studies (RIPS), University of Ghana, Accra, Ghana.

出版信息

Digit Health. 2025 Jun 4;11:20552076251343959. doi: 10.1177/20552076251343959. eCollection 2025 Jan-Dec.

Abstract

PURPOSE

This study explores global frameworks for healthcare data privacy, focusing on the General Data Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and the Protection of Personal Information Act (POPIA). It examines the challenges of regional regulatory disparities, systemic vulnerabilities identified through major health data breach case studies, and the potential of advanced technologies to enhance privacy protections.

METHODS

A qualitative research approach was adopted, incorporating corpus construction and comparative analysis of legal and technical frameworks. The study also utilized case studies of significant health data breaches to identify vulnerabilities and evaluate the role of emerging technologies, such as artificial intelligence (AI) and machine learning (ML), in mitigating risks and enhancing regulatory compliance.

RESULTS

Findings indicate that GDPR, CCPA, and POPIA set high standards for data protection but reveal significant variability in enforcement and technological adoption across regions. Challenges include inconsistent definitions of sensitive data, semantic discrepancies, a lack of standardized protocols, and limited information technology infrastructure in certain jurisdictions. Advanced technologies like AI and ML promise to address these gaps by improving data harmonization and security.

CONCLUSIONS

Addressing healthcare data privacy challenges requires harmonized global regulations, advanced technological tools, and international collaboration. Strengthening frameworks, enhancing information technology infrastructure, and employing semantic models and ontologies are essential for protecting sensitive data, ensuring compliance, and fostering public trust in digital healthcare systems.

摘要

目的

本研究探讨医疗保健数据隐私的全球框架,重点关注《通用数据保护条例》(GDPR)、《加利福尼亚消费者隐私法案》(CCPA)和《个人信息保护法案》(POPIA)。它考察了区域监管差异带来的挑战、通过重大健康数据泄露案例研究识别出的系统漏洞,以及先进技术在增强隐私保护方面的潜力。

方法

采用定性研究方法,纳入语料库构建以及法律和技术框架的比较分析。该研究还利用重大健康数据泄露的案例研究来识别漏洞,并评估人工智能(AI)和机器学习(ML)等新兴技术在降低风险和提高监管合规性方面的作用。

结果

研究结果表明,GDPR、CCPA和POPIA为数据保护设定了高标准,但各地区在执法和技术采用方面存在显著差异。挑战包括敏感数据定义不一致、语义差异、缺乏标准化协议以及某些司法管辖区的信息技术基础设施有限。人工智能和机器学习等先进技术有望通过改善数据协调和安全性来弥补这些差距。

结论

应对医疗保健数据隐私挑战需要统一的全球法规、先进的技术工具和国际合作。加强框架、增强信息技术基础设施以及采用语义模型和本体对于保护敏感数据、确保合规性以及增进公众对数字医疗系统的信任至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f6/12138216/2ad062b91b77/10.1177_20552076251343959-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验