Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República-EAN, 2780-157 Oeiras, Portugal.
J Mol Biol. 2020 Aug 21;432(18):5137-5151. doi: 10.1016/j.jmb.2020.04.028. Epub 2020 May 8.
In mycobacteria, phosphatidylinositol (PI) acts as a common lipid anchor for key components of the cell wall, including the glycolipids phosphatidylinositol mannoside, lipomannan, and lipoarabinomannan. Glycolipids in Mycobacterium tuberculosis, the causative agent of tuberculosis, are important virulence factors that modulate the host immune response. The identity-defining step in PI biosynthesis in prokaryotes, unique to mycobacteria and few other bacterial species, is the reaction between cytidine diphosphate-diacylglycerol and inositol-phosphate to yield phosphatidylinositol-phosphate, the immediate precursor to PI. This reaction is catalyzed by the cytidine diphosphate-alcohol phosphotransferase phosphatidylinositol-phosphate synthase (PIPS), an essential enzyme for mycobacterial viability. Here we present structures of PIPS from Mycobacterium kansasii with and without evidence of donor and acceptor substrate binding obtained using a crystal engineering approach. PIPS from Mycobacterium kansasii is 86% identical to the ortholog from M. tuberculosis and catalytically active. Functional experiments guided by our structural results allowed us to further characterize the molecular determinants of substrate specificity and catalysis in a new mycobacterial species. This work provides a framework to strengthen our understanding of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens.
在分枝杆菌中,磷脂酰肌醇 (PI) 作为细胞壁的关键成分的共同脂质锚,包括糖脂磷脂酰肌醇甘露糖苷、脂阿拉伯甘露聚糖和脂阿拉伯聚糖。分枝杆菌(结核分枝杆菌)中的糖脂是调节宿主免疫反应的重要毒力因子。在原核生物中,PI 生物合成的特征步骤是在肌醇磷酸和胞苷二磷酸二酰甘油之间发生反应,生成磷脂酰肌醇磷酸,这是 PI 的直接前体。该反应由胞苷二磷酸-醇磷酸转移酶磷脂酰肌醇磷酸合酶(PIPS)催化,这是分枝杆菌存活所必需的酶。在这里,我们通过晶体工程方法获得了有和没有供体和受体底物结合证据的堪萨斯分枝杆菌 PIPS 的结构。堪萨斯分枝杆菌的 PIPS 与结核分枝杆菌的同源物有 86%的同一性,并且具有催化活性。我们的结构结果指导的功能实验使我们能够在一个新的分枝杆菌物种中进一步表征底物特异性和催化的分子决定因素。这项工作为加强我们对分枝杆菌病原体中磷脂酰肌醇磷酸生物合成的理解提供了一个框架。